Thomas Liebig, Armel Ulrich Kemloh Wagoum


Emergence of Bluetooth tracking technology for event monitoring is currently applied to extract individual pathways, movement patterns or to rank popularity of locations by their visitor quantities. The next steps are to achieve short term movement predictions, to understand people’s motivations and to come up with microscopic traffic values. This work proposes a solution for these questions, namely, the combination of recorded values with a microsimulation. In our presented framework, simulated pedestrians move from one decision area to the next one in a navigation graph. The graph is automatically generated from the facility based on the inter-visibility of the exits. Intermediate areas are inserted if needed. With the data obtained from the Bluetooth scanners, individual pathways of pedestrians are determined. The routing algorithm will then use those information to adjust the pathways of the agents in the simulation. An accurate reproduction of pedestrian route choice in a complex facility is expected.


  1. Blue, V. J. and Adler, J. L. (2001). Cellular automata microsimulation for modeling bidirectional pedestrian walkways. Transportation Research Part B, 35:293- 312.
  2. Bruno, R. and Delmastro, F. (2003). Design and analysis of a bluetooth-based indoor localization system. In In Personal Wireless Communications, IFIP-TC6 8th International Conference, PWC 2003, pages 711-725.
  3. Chraibi, M., Kemloh, U., Seyfried, A., and Schadschneider, A. (2011). Force-based models of pedestrian dynamics. Networks and Heterogeneous Media, 6(3):425- 442.
  4. de Berg, M., Cheong, O., van Kreveld, M., and Overmars, M. (2008). Computational Geometry: Algorithms and Applications. Springer, 3rd edition.
  5. Fuller, R. (2009). Mobile Entity Localization and Tracking in GPS-less Enviroments. In: Tutorial on Location Determination by RF Means. Springer-Verlag Berlin Heidelberg, Berlin Heidelberg.
  6. Galea, E. R., Gwynne, S., Lawrence, P., Filippidis, L., Blackspields, D., and Cooney, D. (2004). buildingEXODUS V 4.0 - User Guide and Technical Manual.
  7. Giannotti, F. and Pedreschi, D., editors (2008). Mobility, Data Mining and Privacy - Geographic Knowledge Discovery. Springer.
  8. Guo, R.-Y. and Huang, H.-J. (2011). Route choice in pedestrian evacuation: formulated using a potential field. Journal of Statistical Mechanics: Theory and Experiment, 2011(04):P04018.
  9. Hagemann, W. and Weinzerl, J. (2008). Automatische Erfassung von Umsteigern per Bluetooth-Technologie. In: Nahverkerspraxis. Springer-Verlag Berlin Heidelberg, Berlin Heidelberg.
  10. Hallberg, J., Nilsson, M., and Synnes, K. (2003). Positioning with bluetooth. In Telecommunications, 2003. ICT 2003. 10th International Conference on, volume 2, pages 954-958.
  11. Hartmann, D. (2010). Adaptive pedestrian dynamics based on geodesics. New Journal of Physics, 12:043032.
  12. Helbing, D. and Molnár, P. (1995). Social force model for pedestrian dynamics. Phys. Rev. E, 51:4282-4286.
  13. Helivaara, S., Kuusinen, J.-M., Rinne, T., Korhonen, T., and Ehtamo, H. (2011). Pedestrian behavior and exit selection in evacuation of a corridor an experimental study. Safety Science.
  14. Höcker, M., Berkhahn, V., Kneidl, A., Borrmann, A., and Klein, W. (2010). Graph-based approaches for simulating pedestrian dynamics in building models. In 8th European Conference on Product & Process Modelling (ECPPM), University College Cork, Cork, Ireland.
  15. Holl, S. and Seyfried, A. (2009). Hermes - an Evacuation Assistant for Mass Events. inSiDe, 7(1):60-61.
  16. Hoogendoorn, S. P., Bovy, P., and Daamen, W. (2002). Microscopic Pedestrian Wayfinding and Dynamics Modelling. In Schreckenberg, M. and Sharma, S., editors, Pedestrian and Evacuation Dynamics, pages 123-155.
  17. Kemloh Wagoum, A. U. and Seyfried, A. (2011). Modelling dynamic route choice of pedestrians to assess the criticality of building evacuation. arXiv:1103.4080.
  18. Kirchner, A. and Schadschneider, A. (2002). Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics. Physica A, 312:260-276.
  19. Kirik, E. S., Yurgel'yan, T. B., and Krouglov, D. V. (2009). The Shortest Time and/or the Shortest Path Strategies in a CA FF Pedestrian Dynamics Model. Journal of Siberian Federal University. Mathematics & Physics, 2(3):271-278.
  20. Korhonen, T., Hostikka, S., Heliövaara, S., and Ehtamo, H. (2008). FDS+Evac: An Agent Based Fire Evacuation Model. Proceedings of the 4th International Conference on Pedestrian and Evacuation Dynamics.
  21. Kretz, T. (2009). Pedestrian traffic: on the quickest path. Journal of Statistical Mechanics: Theory and Experiment, P03012.
  22. Leitinger, S., Gröchenig, S., Pavelka, S., and Wimmer, M. (2010). Erfassung von Personenstrmen mit der Bluetooth-Tracking-Technologie. In: Angewandte Geoinformatik 2010. Addison Wesley Longman Inc., New York, 15 edition.
  23. Lo, S., Huang, H., Wang, P., and Yuen, K. (2006). A game theory based exit selection model for evacuation. Fire Safety Journal, 41(5):364-369.
  24. Molnár, P. (1995). Modellierung und Simulation der Dynamik von Fußgängerströmen. Dissertation, Universität Stuttgart.
  25. National Institute of Standards and Technology (2002). Secure Hash Standard. National Institute of Standards and Technology, Washington. Federal Information Processing Standard 180-2.
  26. Pels, M., Barhorst, J., Michels, M., Hobo, R., and Barendse, J. (2005). Tracking people using Bluetooth. Implications of enabling Bluetooth discoverable mode. Technical report, University of Amsterdam.
  27. Raney, B. and Nagel, K. (2006). An improved framework for large-scale multi-agent simulations of travel behavior. Towards better performing European Transportation Systems, pages 305-347.
  28. Schadschneider, A., Klingsch, W., Kluepfel, H., Kretz, T., Rogsch, C., and Seyfried, A. (2009). Encyclopedia of Complexity and System Science, volume 5, chapter Evacuation Dynamics: Empirical Results, Modeling and Applications, pages 3142-3176. Springer, Berlin, Heidelberg.
  29. Seyfried, A., Chraibi, M., Kemloh, U., Mehlich, J., and Schadschneider, A. (2010). Runtime Optimization of Force Based Models within the Hermes Project. In Pedestrian and Evacuation Dynamics 2010, pages 363-373. Springer, 2011.
  30. Stange, H., Liebig, T., Hecker, D., Andrienko, G., and Andrienko, N. (2011). Analytical workflow of monitoring human mobility in big event settings using bluetooth. In Proceedings of the 3rd International Workshop on Indoor Spatial Awareness, pages 51-58. ACM.
  31. Thompson, P. A. (1994). Developing new techniques for modelling crowd movement. Phd thesis, University of Edinburgh.
  32. Woodings, R., Joos, D., Clifton, T., and Knutson, C. D. (2001). Rapid heterogeneous connection establishment: Accelerating bluetooth inquiry using irda.
  33. Yu, W. J., Chen, R. Dong, L., and Dai, S. (2005). Centrifugal force model for pedestrian dynamics. Phys. Rev. E, 72(2):026112.

Paper Citation

in Harvard Style

Liebig T. and Kemloh Wagoum A. (2012). MODELLING MICROSCOPIC PEDESTRIAN MOBILITY USING BLUETOOTH . In Proceedings of the 4th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART, ISBN 978-989-8425-96-6, pages 270-275. DOI: 10.5220/0003833802700275

in Bibtex Style

author={Thomas Liebig and Armel Ulrich Kemloh Wagoum},
booktitle={Proceedings of the 4th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,},

in EndNote Style

JO - Proceedings of the 4th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,
SN - 978-989-8425-96-6
AU - Liebig T.
AU - Kemloh Wagoum A.
PY - 2012
SP - 270
EP - 275
DO - 10.5220/0003833802700275