GENERATION OF HDR IMAGES IN NON-STATIC CONDITIONS BASED ON GRADIENT FUSION

Edoardo Provenzi, Sira Ferradans, Marcelo Bertalmío, Edoardo Provenzi, Sira Ferradans, Vicent Caselles

Abstract

We present a new method for the generation of HDR images in non-static conditions, i.e. hand held camera and/or dynamic scenes, based on gradient fusion. Given a reference image selected from a set of LDR pictures of the same scene taken with multiple time exposure, our method improves the detail rendition of its radiance map by adding information suitably selected and interpolated from the companion images. The proposed technique is free from ghosting and bleeding, two typical artifacts of HDR images built through image fusion in non-static conditions. The advantages provided by the gradient fusion approach will be supported by the comparison between our results and those of the state of the art.

References

  1. Chambolle, A. and Pock, T. (2011). A first-order primaldual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision, 40(1):120-145.
  2. Debevec, P. and Malik, J. (1997). Recovering high dynamic range radiance maps from photographs. In Proc. of the 24th annual conf. on Computer graphics, pages 369-378.
  3. Eden, A., Uyttendaele, M., and Szeliski, R. (2006). Seamless image stitching of scenes with large motions and exposure differences. In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, volume 2, pages 2498-2505.
  4. Gallo, O., Gelfand, N., Chen, W., Tico, M., and Pulli, K. (2009). Artifact-free high dynamic range imaging. IEEE International Conference on Computational Photography (ICCP).
  5. Gonzales, R. and Woods, R. (2002). Digital image processing. Prentice Hall.
  6. Granados, M., Ajdin, B., Wand, M., Theobalt, C., Seidel, H.-P., and Lensch, H. (2010). Optimal hdr reconstruction with linear digital cameras. In 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 215-222.
  7. Grosch, T. (2006). Fast and robust high dynamic range image generation with camera and object movement. In Vision, Modeling and Visualization, RWTH Aachen, pages 277-284.
  8. Heo, Y., Lee, K., Lee, S., Moon, Y., and Cha, J. (2011). Ghost-free high dynamic range imaging. In Computer Vision - ACCV 2010, volume 6495 of Lecture Notes in Computer Science, pages 486-500. Springer BerlinHeidelberg.
  9. Jacobs, K., Loscos, C., and Ward, G. (2008). Automatic high-dynamic range image generation for dynamic scenes. IEEE Computer Graphics and Applications, 28:84-93.
  10. Kang, S., Uyttendaele, M., Winder, S., and Szeliski, R. (2003). High dynamic range video. ACM Trans. Graph., 22:319-325.
  11. Khan, E., Akyuz, A., and Reinhard, E. (2006). Ghost removal in high dynamic range images. In IEEE International Conference on Image Processing, pages 2005-2008.
  12. Mann, S. (2000). Comparametric equations with practical applications in quantigraphic image processing. Image Processing, IEEE Transactions on, 9(8):1389- 1406.
  13. Mann, S. and Picard, R. W. (1995). On being undigital with digital cameras: Extending dynamic range by combining differently exposed pictures. In Proceedings of IS&T, pages 442-448.
  14. Mitsunaga, T. and Nayar, S. (1999). Radiometric self calibration. In Computer Vision and Pattern Recognition, 1999. IEEE Computer Society Conference on., volume 1, pages 374-380 Vol. 1.
  15. Pérez, P., Gangnet, M., and Blake, A. (2003). Poisson image editing. In ACM SIGGRAPH 2003 Papers, pages 313-318.
  16. Piella, G. (2009). Image fusion for enhanced visualization: A variational approach. International Journal of Computer Vision, 83:1-11.
  17. Reinhard, E., Ward, G., Pattanaik, S., and Debevec, P. (2005). High Dynamic Range Imaging, Acquisition, Display, And Image-Based Lighting. Morgan Kaufmann Ed.
  18. Tao, M., Johnson, M., and Paris, S. (2010). Error-tolerant image compositing. In Proceedings of the 11th European conference on Computer vision: Part I, ECCV 2010, pages 31-44.
  19. Tomaszewska, A. and Mantiuk, R. (2007). Image registration for multi-exposure high dynamic range image acquisition. In Proc. Intl. Conf. Central Europe on Computer Graphics, Visualization, and Computer Vision (WSCG).
  20. Ward, G. (2003). Fast, robust image registration for compositing high dynamic range photographs from handheld exposures. Journal of graphic tools, 8:17-30.
Download


Paper Citation


in Harvard Style

Provenzi E., Ferradans S., Bertalmío M., Provenzi E., Ferradans S. and Caselles V. (2012). GENERATION OF HDR IMAGES IN NON-STATIC CONDITIONS BASED ON GRADIENT FUSION . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2012) ISBN 978-989-8565-03-7, pages 31-37. DOI: 10.5220/0003840700310037


in Bibtex Style

@conference{visapp12,
author={Edoardo Provenzi and Sira Ferradans and Marcelo Bertalmío and Edoardo Provenzi and Sira Ferradans and Vicent Caselles},
title={GENERATION OF HDR IMAGES IN NON-STATIC CONDITIONS BASED ON GRADIENT FUSION},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2012)},
year={2012},
pages={31-37},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003840700310037},
isbn={978-989-8565-03-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2012)
TI - GENERATION OF HDR IMAGES IN NON-STATIC CONDITIONS BASED ON GRADIENT FUSION
SN - 978-989-8565-03-7
AU - Provenzi E.
AU - Ferradans S.
AU - Bertalmío M.
AU - Provenzi E.
AU - Ferradans S.
AU - Caselles V.
PY - 2012
SP - 31
EP - 37
DO - 10.5220/0003840700310037