HARDWARE-ACCELERATED WEB VISUALIZATION OF VECTOR FIELDS - Case Study in Oceanic Currents

Mauricio Aristizabal, John Congote, Alvaro Segura, Aitor Moreno, Harbil Arregui, Oscar Ruiz

Abstract

Visualization of vector fields plays an important role in research activities nowadays. Increasing web applications allow a fast, multi-platform and multi-device access to data. As a result, web applications must be optimized in order to be performed heterogeneously as well as on high-performance as on low capacity devices. This paper presents a hardware-accelerated scheme for integration-based flow visualization techniques, based on a hierarchical integration procedure which reduces the computational effort of the algorithm from linear to logarithmic, compared to serial integration methodologies. The contribution relies on the fact that the optimization is only implemented using the graphics application programming interface (API), instead of requiring additional APIs or plug-ins. This is achieved by using images as data storing elements instead of graphical information matrices. A case study in oceanic currents is implemented.

References

  1. Cabral, B. and Leedom, L. (1993). Imaging vector fields using line integral convolution. In Proceedings of the 20th annual conference on Computer graphics and interactive techniques, pages 263-270. ACM.
  2. Callieri, M., Andrei, R., Di Benedetto, M., Zoppè, M., and Scopigno, R. (2010). Visualization methods for molecular studies on the web platform. In Proceedings of the 15th International Conference on Web 3D Technology, pages 117-126. ACM.
  3. Congote, J., Segura, A., Kabongo, L., Moreno, A., Posada, J., and Ruiz, O. (2011). Interactive visualization of volumetric data with webgl in real-time. In Proceedings of the 16th International Conference on 3D Web Technology, pages 137-146. ACM.
  4. Forssell, L. and Cohen, S. (1995). Using line integral convolution for flow visualization: Curvilinear grids, variable-speed animation, and unsteady flows. Visualization and Computer Graphics, IEEE Transactions on, 1(2):133-141.
  5. Hankin, S., Blower, J., Carval, T., Casey, K., Donlon, C., Lauret, O., Loubrieu, T., Srinivasan, A., Trinanes, J., Godoy, O., et al. (2010). Netcdf-cf-opendap: Standards for ocean data interoperability and object lessons for community data standards processes. In Oceanobs 2009, Venice Convention Centre, 21-25 septembre 2009, Venise.
  6. Hlawatsch, M., Sadlo, F., and Weiskopf, D. (2011). Hierarchical line integration. Visualization and Computer Graphics, IEEE Transactions on, 99:1-1.
  7. Kenwright, D. and Mallinson, G. (1992). A 3-d streamline tracking algorithm using dual stream functions. In Proceedings of the 3rd conference on Visualization'92, pages 62-68. IEEE Computer Society Press.
  8. Klassen, R. and Harrington, S. (1991). Shadowed hedgehogs: A technique for visualizing 2d slices of 3d vector fields. In Proceedings of the 2nd conference on Visualization'91, pages 148-153. IEEE Computer Society Press.
  9. Lane, D. (1994). Ufat: a particle tracer for time-dependent flow fields. In Proceedings of the conference on Visualization'94, pages 257-264. IEEE Computer Society Press.
  10. Laramee, R. S., Hauser, H., Doleisch, H., Vrolijk, B., Post, F. H., and Weiskopf, D. (2004). The state of the art in flow visualization: Dense and texture-based techniques. In Computer Graphics Forum, volume 23, pages 203-221. Wiley Online Library.
  11. Liu, Z. and Moorhead, R. (2005). Accelerated unsteady flow line integral convolution. IEEE Transactions on Visualization and Computer Graphics, pages 113- 125.
  12. Liu, Z. and Moorhead II, R. (2004). Visualizing timevarying three-dimensional flow fields using accelerated uflic. In The 11th International Symposium on Flow Visualization, pages 9-12. Citeseer.
  13. McLoughlin, T., Laramee, R. S., Peikert, R., Post, F. H., and Chen, M. (2010). Over two decades of integrationbased, geometric flow visualization. In Computer Graphics Forum, volume 29, pages 1807-1829. Wiley Online Library.
  14. Van Wijk, J. (2003). Image based flow visualization for curved surfaces. In Proceedings of the 14th IEEE Visualization 2003 (VIS'03), page 17. IEEE Computer Society.
  15. Van Wijk, J. J. (2002). Image based flow visualization. In ACM Transactions on Graphics (TOG), volume 21, pages 745-754. ACM.
Download


Paper Citation


in Harvard Style

Aristizabal M., Congote J., Segura A., Moreno A., Arregui H. and Ruiz O. (2012). HARDWARE-ACCELERATED WEB VISUALIZATION OF VECTOR FIELDS - Case Study in Oceanic Currents . In Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2012) ISBN 978-989-8565-02-0, pages 759-763. DOI: 10.5220/0003843707590763


in Bibtex Style

@conference{ivapp12,
author={Mauricio Aristizabal and John Congote and Alvaro Segura and Aitor Moreno and Harbil Arregui and Oscar Ruiz},
title={HARDWARE-ACCELERATED WEB VISUALIZATION OF VECTOR FIELDS - Case Study in Oceanic Currents},
booktitle={Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2012)},
year={2012},
pages={759-763},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003843707590763},
isbn={978-989-8565-02-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2012)
TI - HARDWARE-ACCELERATED WEB VISUALIZATION OF VECTOR FIELDS - Case Study in Oceanic Currents
SN - 978-989-8565-02-0
AU - Aristizabal M.
AU - Congote J.
AU - Segura A.
AU - Moreno A.
AU - Arregui H.
AU - Ruiz O.
PY - 2012
SP - 759
EP - 763
DO - 10.5220/0003843707590763