Arne Petersen, Reinhard Koch


This paper proposes a novel parametrization for probabilistic stereo SLAM algorithms. It is optimized to fulfill the assumption of Gaussian probability distributions for system errors. Moreover it makes full use of the contraints induced by stereo vision and provides a close to linear observation model. Therefore the position and orientation are estimated incremetally. The parametrization of landmarks is chosen as the landmarks projection in the master camera and its disparity to the projection in the slave camera. This way a minimal parametrization is given, that is predestinated for linear probabilistic estimators.


  1. Bonarini, A., Burgard, W., Fontana, G., Matteucci, M., Sorrenti, D. G., and Tardos, J. D. (2006). Rawseeds: Robotics advancement through web-publishing of sensorial and elaborated extensive data sets. In proceedings of IROS'06 Workshop on Benchmarks in Robotics Research.
  2. Brooks, R. (1985). Visual map making for a mobile robot. In Proceedings IEEE International Conference on Robotics and Automation 1985, volume 2, pages 824 - 829.
  3. Ceriani, S., Fontana, G., Giusti, A., Marzorati, D., Matteucci, M., Migliore, D., Rizzi, D., Sorrenti, D. G., and Taddei, P. (2009). Rawseeds ground truth collection systems for indoor self-localization and mapping. Autonomous Robots, 27(4):353-371.
  4. Civera, J., Davison, A. J., and Montiel, J. M. M. (2008). Inverse depth parametrization for monocular slam. Autonomous Robots, 24(5):932-945.
  5. Crowley, J. L. (1989). World modeling and position estimation for a mobile robot using ultrasonic ranging. In IEEE Conference on Robotics and Automation, pages 1574-1579.
  6. Dissanayake, M. W. M. G., Newman, P., Clark, S., DurrantWhyte, H. F., and Csorba, M. (2001). A solution to the simultaneous localization and map building (slam) problem. Transactions on Robotics and Automation, 17(3):229-241.
  7. Hartley, R. and Zisserman, A. (2003). Multiple View Geometry. Cambirdge University Press, 2 edition.
  8. Herath, D. C., Kodagoda, K. R. S., and Dissanayake, G. (2006). Modeling errors in small baseline stereo for slam. Technical report, ARC Centre of Excellence in Autonomous Systems (CAS).
  9. Hildebrandt, M. and Kirchner, F. (2010). Imu-aided stereo visual odometry for ground-tracking auv applications. Technical report, Underwater Robotics Department, DFKI RIC Bremen.
  10. ?Imre, E. and Berger, M.-O. (2009). A 3-component inverse depth parameterization for particle filter slam. In Lecture Notes in Computer Science, volume 5748/2009, pages 1-10. Springer.
  11. Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82.
  12. Lefebvre, T., Bruyninckx, H., and De Schutter, J. (2004). Kalman filters for non-linear systems: a comparison of performance. International Journal of Control, 77(7).
  13. Lemaire, T., Berger, C., Jung, I.-K., and Lacroix, S. (2007). Vision-based slam: Stereo and monocular approaches. International Journal of Computer Vision, 73(3):343- 364.
  14. Leonard, J. and Durrant-Whyte, H. (1992). Directed Sonar Sensing for Mobile Robot Navigation. Springer.
  15. McGlone, J. C., Förstner, W., and Wrobel, B. (2004). Manual of Photogrammetry, chapter 2 Mathematical Concepts in Photogrammetry. asprs.
  16. Paz, L. M., Piniés, P., Tardós, J. D., and Neira, J. (2008). Large-scale 6-dof slam with stereo-in-hand. Transactions on Robotics, 24(5).
  17. Petersen, A. and Koch, R. (2010). Statistical analysis of kalman filters by conversion to gauss-helmert models with applications to process-noise estimation. In Proceedings of ICPR2010, Istanbul, Turkey.
  18. Schleicher, D., Bergasa, L. M., Barea, R., López, E., Ocana, M., Nuevo, J., and Fernández, P. (2007). Real-time stereo visual slam in large-scale environments based on sift fingerprints. Technical report, Department of Electronics, University of Alcalá.
  19. Solá, J., Monin, A., and Devy, M. (2007). Bicamslam: Two times mono is more than stereo. In Proceedings of IEEE International Conference on Robotics and Automation, pages 4795-4800, Rome, Italy.
  20. Song, Y., Song, Y., and Li, Q. (2011). Robust iterated sigma point fastslam algorithm for mobile robot simultaneous localization and mapping. Chinese Journal of Mechanical Engineering, 24.
  21. Sünderhauf, N., Lange, S., and Protzel, P. (2007). Using the unscented kalman filter in mono-slam with inverse depth parametrization for autonomous airship control. In Proceedings of IEEE International Workshop on Safety Security and Rescue Robotics.
  22. Uhlmann, J. K. (2003). Covariance consistency methods for fault-tolerant distributed data fusion. Information Fusion, 4(3):201 - 215.
  23. Welch, G. and Bishop, G. (2006). An introduction to the kalman filter. Technical report, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Paper Citation

in Harvard Style

Petersen A. and Koch R. (2012). A NOVEL STATE PARAMETRIZATION FOR STEREO-SLAM . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2012) ISBN 978-989-8565-04-4, pages 144-153. DOI: 10.5220/0003844601440153

in Bibtex Style

author={Arne Petersen and Reinhard Koch},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2012)},

in EndNote Style

JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2012)
SN - 978-989-8565-04-4
AU - Petersen A.
AU - Koch R.
PY - 2012
SP - 144
EP - 153
DO - 10.5220/0003844601440153