A NEW REGION-BASED PDE FOR PERCEPTUAL IMAGE RESTORATION

Baptiste Magnier, Philippe Montesinos, Daniel Diep

Abstract

In this paper, we present a new image regularization method using a rotating smoothing filter. The novelty of this approach resides in the mixing of ideas coming both from pixel classification which determines roughly if a pixel belongs to a homogenous region or an edge and an anisotropic perceptual edge detector which computes two precise diffusion directions. These directions are used by an anisotropic diffusion scheme. This anisotropic diffusion is accurately controlled near edges and corners, while isotropic diffusion is applied to smooth homogeneous and highly noisy regions. Our results and a comparison with anisotropic diffusion methods applied on a real image show that our model is able to efficiently regularize images and to control the diffusion.

References

  1. Alvarez, L., Lions, P.-L., and Morel, J.-M. (1992). Image selective smoothing and edge detection by nonlinear diffusion, ii. SIAM Journal of Numerical Analysis, 29(3):845-866.
  2. Aubert, G. and Kornprobst, P. (2006). Mathematical problems in image processing: partial differential equations and the calculus of variations (second edition), volume 147. Springer-Verlag.
  3. Black, M., Sapiro, G., Marimont, D., and Heeger, D. (1998). Robust anisotropic diffusion. IEEE Transactions on Image Processing, 7(3):421-432.
  4. Catté, F., Dibos, F., and Koepfler, G. (1995). A morphological scheme for mean curvature motion and applications to anisotropic diffusion and motion of level sets. SIAM J. Numer. Anal., 32:1895-1909.
  5. Deriche, R. (1992). Recursively implementing the gaussian and its derivatives. In International Conference On Image Processing. A longer version is INRIA Research Report RR-1893, pages 263-267.
  6. Freeman, W. T. and Adelson, E. H. (1991). The design and use of steerable filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13:891-906.
  7. Jacob, M. and Unser, M. (2004). Design of steerable filters for feature detection using Canny-like criteria. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(8):1007-1019.
  8. Magnier, B., Montesinos, P., and Diep, D. (2011a). Fast Anisotropic Edge Detection Using Gamma Correction in Color Images. In IEEE 7th International Symposium on Image and Signal Processing and Analysis, pages 212-217.
  9. Magnier, B., Montesinos, P., and Diep, D. (2011b). Ridges and valleys detection in images using difference of rotating half smoothing filters. In Advances Concepts for Intelligent Vision Systems, pages 261-272.
  10. Magnier, B., Montesinos, P., and Diep, D. (2011c). Texture Removal in Color Images by Anisotropic Diffusion. In International Conference on Computer Vision Theory and Applications (VISAPP 2011), pages 40-50.
  11. Montesinos, P. and Magnier, B. (2010). A New Perceptual Edge Detector in Color Images. In Advances Concepts for Intelligent Vision Systems, pages 209-220.
  12. Nagao, M. and Matsuyama, T. (1979). Edge preserving smoothing. CGIP, 9:394-407.
  13. Perona, P. (1992). Steerable-scalable kernels for edge detection and junction analysis. IMAVIS, 10(10):663-672.
  14. Perona, P. and Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Recognition and Machine Intelligence, 12:629-639.
  15. Tomasi, C. and Manduchi, R. (1998). Bilateral filtering for gray and color images. In International Conference on Computer Vision, pages 839-846. IEEE.
  16. Tschumperlé, D. (2006). Fast anisotropic smoothing of multi-valued images using curvature-preserving PDE's. International Journal of Computer Vision, 68(1):65-82.
  17. Tschumperlé, D. and Deriche, R. (2005). Vector-valued image regularization with pdes: A common framework for different applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 506- 517.
  18. Wang, Z., Bovik, A., Sheikh, H., and Simoncelli, E. (2004). Image quality assessment: From error visibility to structural similarity. Image Processing, IEEE Transactions on, 13(4):600-612.
  19. Weickert, J. (1998). Anisotropic diffusion in image processing. Teubner-Verlag, Stuttgart, Germany.
Download


Paper Citation


in Harvard Style

Magnier B., Montesinos P. and Diep D. (2012). A NEW REGION-BASED PDE FOR PERCEPTUAL IMAGE RESTORATION . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2012) ISBN 978-989-8565-03-7, pages 56-65. DOI: 10.5220/0003853000560065


in Bibtex Style

@conference{visapp12,
author={Baptiste Magnier and Philippe Montesinos and Daniel Diep},
title={A NEW REGION-BASED PDE FOR PERCEPTUAL IMAGE RESTORATION},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2012)},
year={2012},
pages={56-65},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003853000560065},
isbn={978-989-8565-03-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2012)
TI - A NEW REGION-BASED PDE FOR PERCEPTUAL IMAGE RESTORATION
SN - 978-989-8565-03-7
AU - Magnier B.
AU - Montesinos P.
AU - Diep D.
PY - 2012
SP - 56
EP - 65
DO - 10.5220/0003853000560065