DECODING SSVEP RESPONSES BASED ON PARAFAC DECOMPOSITION

Nikolay V. Manyakov, Nikolay Chumerin, Adrien Combaz, Arne Robben, Marijn van Vliet, Marc M. Van Hulle

Abstract

In this position paper, we investigate whether a parallel factor analysis (Parafac) decomposition is beneficial to the decoding of steady-state visual evoked potentials (SSVEP) present in electroencephalogram (EEG) recordings taken from the subject’s scalp. In particular, we develop an automatic algorithm aimed at detecting the stimulation frequency after Parafac decomposition. The results are validated on recordings made from 54 subjects using consumer-grade EEG hardware (Emotiv’s EPOC headset) in a real-world environment. The detection of one frequency among 12, 4 and 2 possible was considered to assess the feasibility for Brain Computer Interfacing (BCI). We determined the frequencies subsets, among all subjects, that maximize the detection rate.

References

  1. Acar, E., Aykut-Bingol, C., Bingol, H., Bro, R., and Yener, B. (2007). Multiway analysis of epilepsy tensors. Bioinformatics, 23(13):i10.
  2. Bro, R. (1997). Parafac. Tutorial and applications. Chemometrics and intelligent laboratory systems, 38(2):149- 171.
  3. Bro, R. and Kiers, H. (2003). A new efficient method for determining the number of components in Parafac models. Journal of Chemometrics, 17(5):274-286.
  4. Chumerin, N., Manyakov, N., Combaz, A., Robben, A., van Vliet, M., and Van Hulle, M. (2011). Subjectadaptive steady-state visual evoked potential detection for brain-computer interface. In The 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS2011), pages 369-373.
  5. Cichocki, A., Washizawa, Y., Rutkowski, T., Bakardjian, H., Phan, A., Choi, S., Lee, H., Zhao, Q., Zhang, L., and Li, Y. (2008). Noninvasive BCIs: Multiway signal-processing array decompositions. Computer, 41(10):34-42.
  6. Cichocki, A., Zdunek, R., Phan, A., and Amari, S. (2009). Nonnegative matrix and tensor factorizations: applications to exploratory multi-way data analysis and blind source separation. Wiley.
  7. De Vos, M., De Lathauwer, L., Vanrumste, B., Van Huffel, S., and Van Paesschen, W. (2007). Canonical decomposition of ictal scalp EEG and accurate source localisation: Principles and simulation study. Computational Intelligence and Neuroscience, 2007:1-8.
  8. Friman, O., Volosyak, I., and Gräser, A. (2007). Multiple channel detection of steady-state visual evoked potentials for brain-computer interfaces. IEEE Transactions on Biomedical Engineering, 54(4):742-750.
  9. Gao, Y., R., W., X., G., B., H., and S., G. (2006). A practical VEP-based brain-computer interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14(2).
  10. Herrmann, C. (2001). Human EEG responses to 1-100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena. Experimental Brain Research, 137(3):346-353.
  11. Manyakov, N., Chumerin, N., Combaz, A., Robben, A., and Van Hulle, M. (2010). Decoding SSVEP Responses Using Time Domain Classification. In Proc. of the International Conference on Fuzzy Computation and 2nd International Conference on Neural Computation, pages 376-380.
  12. Miwakeichi, F., Martinez-Montes, E., Valdés-Sosa, P., Nishiyama, N., Mizuhara, H., and Yamaguchi, Y. (2004). Decomposing EEG data into space-timefrequency components using parallel factor analysis. NeuroImage, 22(3):1035-1045.
  13. Nion, D. and Sidiropoulos, N. (2009). Adaptive algorithms to track the Parafac decomposition of a thirdorder tensor. IEEE Transactions on Signal Processing, 57(6):2299-2310.
  14. Segers, H., Combaz, A., Manyakov, N., Chumerin, N., Vanderperren, K., Van Huffel, S., and Van Hulle, M. (2011). Steady state visual evoked potential (SSVEP)- based brain spelling system with synchronous and asynchronous typing modes. In 15th Nordic-Baltic Conference on Biomedical Engineering and Medical Physics (NBC 2011), IFMBE Proceedings, volume 34, pages 164-167.
Download


Paper Citation


in Harvard Style

V. Manyakov N., Chumerin N., Combaz A., Robben A., van Vliet M. and M. Van Hulle M. (2012). DECODING SSVEP RESPONSES BASED ON PARAFAC DECOMPOSITION . In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2012) ISBN 978-989-8425-89-8, pages 443-447. DOI: 10.5220/0003853604430447


in Bibtex Style

@conference{biosignals12,
author={Nikolay V. Manyakov and Nikolay Chumerin and Adrien Combaz and Arne Robben and Marijn van Vliet and Marc M. Van Hulle},
title={DECODING SSVEP RESPONSES BASED ON PARAFAC DECOMPOSITION},
booktitle={Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2012)},
year={2012},
pages={443-447},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003853604430447},
isbn={978-989-8425-89-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2012)
TI - DECODING SSVEP RESPONSES BASED ON PARAFAC DECOMPOSITION
SN - 978-989-8425-89-8
AU - V. Manyakov N.
AU - Chumerin N.
AU - Combaz A.
AU - Robben A.
AU - van Vliet M.
AU - M. Van Hulle M.
PY - 2012
SP - 443
EP - 447
DO - 10.5220/0003853604430447