Hannes Schulz, Johannes A. Postma, Dagmar van Dusschoten, Hanno Scharr, Sven Behnke


We present a novel method for deriving a structural model of a plant root system from 3D Magnetic Resonance Imaging (MRI) data of soil grown plants. The structural model allows calculation of physiologically relevant parameters. Roughly speaking, MRI images show local water content of the investigated sample. The small, local amounts of water in roots require a relatively high resolution, which results in low SNR images. However, the spatial resolution of the MRI images remains coarse relative to the diameter of typical fine roots, causing many gaps in the visible root system. To reconstruct the root structure, we propose a three step approach: 1) detect tubular structures, 2) connect all pixels to the base of the root using Dijkstra’s algorithm, and 3) prune the tree using two signal strength related thresholds. Dijkstra’s algorithm determines the shortest path of each voxel to the base of the plant root, weighing the Euclidean distance measure by a multi-scale vesselness measure. As a result, paths running within good root candidates are preferred over paths in bare soil. We test this method using both virtually generated MRI images of Maize and real MRI images of Barley roots. In experiments on synthetic data, we show limitations of our algorithm with regard to resolution and noise levels. In addition we show how to use our reconstruction for root phenotyping on real MRI data of Barley roots in soil.


  1. Armengaud, P., Zambaux, K., Hills, A., Sulpice, R., Pattison, R. J., Blatt, M. R., and Amtmann, A. (2009). Ez-rhizo: integrated software for the fast and accurate measurement of root system architecture. Plant Journal, 57(5):945-956.
  2. Brown, J. M., Kramer, P. J., Cofer, G. P., and Johnson, G. A. (1990). Use of nuclear-magnetic resonance microscopy for noninvasive observations of root-soil water relations. Theoretical and Applied Climatology, pages 229-236.
  3. Dijkstra, E. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1(1):269-271.
  4. Dowdy, R., Smucker, A., Dolan, M., and Ferguson, J. (1998). Automated image analyses for separating plant roots from soil debris elutrated from soil cores. Plant and Soil, 200:91-94.
  5. Ferreira, S., Senning, M., Sonnewald, S., Keßling, P.-M., Goldstein, R., and Sonnewald, U. (2010). Comparative transcriptome analysis coupled to x-ray ct reveals sucrose supply and growth velocity as major determinants of potato tuber starch biosynthesis. BMC Genomics.
  6. Online journal, 11(17).
  7. Frangi, A., Niessen, W., Vincken, K., and Viergever, M. (1998). Multiscale vessel enhancement filtering. Medical Image Computing and Computer-Assisted Interventation (MICCAI), pages 130-137.
  8. Haacke, E., Brown, R., Thompson, M., and Venkatesan, R. (1999). Magnetic Resonance Imaging, Physical Principles and Sequence Design. John Wiley & Sons.
  9. Haber-Pohlmeier, S., van Dusschoten, D., and Stapf, S. (2009). Waterflow visualized by tracer transport in root-soil-systems using MRI. In Geophysical Research Abstracts, volume 11.
  10. Jahnke, S., Menzel, M. I., van Dusschoten, D., Roeb, G. W., Bühler, J., Minwuyelet, S., Blümler, P., Temperton, V. M., Hombach, T., Streun, M., Beer, S., Khodaverdi, M., Ziemons, K., Coenen, H. H., and Schurr, U. (2009). Combined MRI-PET dissects dynamic changes in plant structures and functions. Plant Journal, pages 634- 644.
  11. Krissian, K., Malandain, G., Ayache, N., Vaillant, R., and Trousset, Y. (1998). Model based multiscale detection of 3d vessels. In Proceedings of the Workshop on Biomedical Image Analysis, pages 202-210. IEEE.
  12. Lindeberg, T. (1996). Edge detection and ridge detection with automatic scale selection. In CVPR, pages 465- 470.
  13. Lo, P., van Ginneken, B., and de Bruijne, M. (2010). Vessel tree extraction using locally optimal paths. In Biomedical Imaging: From Nano to Macro, pages 680-683.
  14. Mühlich, M., Truhn, D., Nagel, K., Walter, A., Scharr, H., and Aach, T. (2008). Measuring plant root growth. In Pattern Recognition 2008, volume 5096 of Lecture Notes in Computer Science, pages 497-506. Springer.
  15. Nagel, K. A., Schurr, U., and Walter, A. (2006). Dynamics of root growth stimulation in nicotiana tabacum in increasing light intensity. Plant Cell and Environment, 29(10):1936-1945.
  16. Nakanishi, T., Okuni, Y., Furukawa, J., Tanoi, K., Yokota, H., Ikeue, N., Matsubayashi, M., Uchida, H., and Tsiji, A. (2003). Water movement in a plant sample by neutron beam analysis as well as positron emission tracer imaging system. Journal of Radioanalytical and Nuclear Chemistry, 255:149-153.
  17. Pierret, A., Doussan, C., Garrigues, E., and Kirby, J. M. (2003). Observing plant roots in their environment: current imaging options and specific contribution of two-dimensional approaches. Agronomy for Sustainable Development, 23(5-6):471-479.
  18. Postma, J. A. and Lynch, J. P. (2011a). Root cortical aerenchyma enhances the acquisition and utilization of nitrogen, phosphorus, and potassium in zea mays l. Plant Physiology, 156(3):1190-1201.
  19. Postma, J. A. and Lynch, J. P. (2011b). Theoretical evidence for the functional benefit of root cortical aerenchyma in soils with low phosphorus availability. Annals of Botany, 107(5):829-841.
  20. Southon, T. E. and Jones, R. A. (1992). NMR imaging of roots - methods for reducing the soil signal and for obtaining a 3-dimensional description of the roots. Physiologia Plantarum, pages 322-328.
  21. Tracy, S., Roberts, J., Black, C., McNeill, A., Davidson, R., and Mooney, S. (2010). The X-factor: visualizing undisturbed root architecture in soils using X-ray computed tomography. Journal of Experimental Botany, 61(2):311-313.
  22. van Rijsbergen, C. (1979). Information Retrieval. Butterworth, London, Boston, 2nd edition.
  23. Waisel, Y., Eshel, A., and Kafkafi, U., editors (2002). Plant Roots: The Hidden Half. Marcel Dekker, Inc.

Paper Citation

in Harvard Style

Schulz H., A. Postma J., van Dusschoten D., Scharr H. and Behnke S. (2012). 3D RECONSTRUCTION OF PLANT ROOTS FROM MRI IMAGES . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2012) ISBN 978-989-8565-04-4, pages 24-33. DOI: 10.5220/0003869800240033

in Bibtex Style

author={Hannes Schulz and Johannes A. Postma and Dagmar van Dusschoten and Hanno Scharr and Sven Behnke},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2012)},

in EndNote Style

JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2012)
SN - 978-989-8565-04-4
AU - Schulz H.
AU - A. Postma J.
AU - van Dusschoten D.
AU - Scharr H.
AU - Behnke S.
PY - 2012
SP - 24
EP - 33
DO - 10.5220/0003869800240033