A RULE-BASED CLASSIFICATION OF LARYNGOPATHIES BASED ON SPECTRUM DISTURBANCE ANALYSIS - An Exemplary Study

Krzysztof Pancerz, Wiesław Paja, Jarosław Szkoła, Jan Warchoł, Grażyna Olchowik

Abstract

Our research concerns data derived from the examined patient’s speech signals for a non-invasive diagnosis of selected larynx diseases. The paper is devoted to the rule-based classification of patients on the basis of a family of coefficients reflecting spectrum disturbances around basic tones and their multiples. The paper presents a proposed procedure for feature selection and classification as well as the experiments carried out on real-life data.

References

  1. Bazan, J. G., Nguyen, H. S., Nguyen, S. H., Synak, P., and Wroblewski, J. (2000). Rough set algorithms in classification problem. In Polkowski, L., Tsumoto, S., and Lin, T. Y., editors, Rough Set Methods and Applications, pages 49-88. Physica-Verlag, Heidelberg, Germany.
  2. Bazan, J. G. and Szczuka, M. S. (2005). The Rough Set Exploration System. In Peters, J. and Skowron, A., editors, Transactions on Rough Sets III, pages 37-56. Springer-Verlag, Berlin Heidelberg.
  3. Blajdo, P., Grzymala-Busse, J., Hippe, Z., Knap, M., Marek, T., Mroczek, T., and WrzesieÁ, M. (2004). A suite of machine learning programs for data mining: chemical applications. In Debska, B. and Fic, G., editors, Information Systems In Chemistry 2, pages 7-14. University of Technology Editorial Office, Rzeszow.
  4. Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1993). Classification and Regression Trees. Chapman & Hall, Boca Raton.
  5. Cios, K., Pedrycz, W., Swiniarski, R., and Kurgan, L. (2007). Data mining. A knowledge dis-covery approach. Springer, New York.
  6. Grzymala-Busse, J. (1997). A new version of the rule induction system LERS. Fundamenta Informaticae, 31:27- 39.
  7. Hippe, Z. (1997). Machine learning a promising strategy for business information processing? In Abramowicz, W., editor, Business Information Systems, pages 603- 622. Academy of Economics Editorial Office, Poznan.
  8. MDVP (2011). Multi-dimensional voice program (MDVP). http://www.kayelemetrics.com.
  9. Paja, W. and Hippe, Z. (2005). Feasibility studies of quality of knowledge mined from multiple secondary sources. I. Implementation of generic operations. In Klopotek, M., Wierzchon, S., and Trojanowski, K., editors, Intelligent Information Processing and Web Mining, pages 461-465. Springer-Verlag, Berlin Heidelberg.
  10. Pancerz, K., Szkola, J., Warchol, J., and Olchowik, G. (2011). Spectrum disturbance analysis for computeraided diagnosis of laryngopathies: An exemplary study. In Proc. of the International Workshop on Biomedical Informatics and Biometric Technologies (BT'2011), Zilina, Slovak Republic.
  11. Quinlan, J. (1993). C4.5. Programs for machine learning. Morgan Kaufmann Publishers.
  12. Semmlow, J. (2009). Biosignal and Medical Image Processing. CRC Press.
  13. Szkola, J., Pancerz, K., and Warchol, J. (2010a). Computerbased clinical decision support for laryngopathies using recurrent neural networks. In Hassanien, A. et al., editors, Proc. of the ISDA'2010, pages 627-632, Cairo, Egypt.
  14. Szkola, J., Pancerz, K., and Warchol, J. (2010b). Computer diagnosis of laryngopathies based on temporal pattern recognition in speech signal. Bio-Algorithms and Med-Systems, 6(12):75-80.
  15. Szkola, J., Pancerz, K., and Warchol, J. (2011a). Improving learning ability of recurrent neural networks: Experiments on speech signals of patients with laryngopathies. In Babiloni, F. et al., editors, Proc. of the BIOSIGNALS'2011, pages 360-364, Rome, Italy.
  16. Szkola, J., Pancerz, K., and Warchol, J. (2011b). Recurrent neural networks in computer-based clinical decision support for laryngopathies: An experimental study. Computational Intelligence and Neuroscience, 2011. Article ID 289398.
  17. Warchol, J. (2006). Speech Examination with Correct and Pathological Phonation Using the SVAN 912AE Analyser (in Polish). PhD thesis, Medical University of Lublin.
  18. Warchol, J., Szkola, J., and Pancerz, K. (2010). Towards computer diagnosis of laryngopathies based on speech spectrum analysis: A preliminary approach. In Fred, A., Filipe, J., and Gamboa, H., editors, Proc. of the BIOSIGNALS'2010, pages 464-467, Valencia, Spain.
  19. Winholtz, W. and Titze, I. (1998). Suitability of minidisc (MD) recordings for voice perturbation analysis. Journal of Voice, 12(2):138-142.
  20. Witten, I. H. and Frank, E. (2005). Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann.
  21. Wróblewski, J. (1998). Genetic algorithms in decomposition and classification problem. In Polkowski, L. and Skowron, A., editors, Rough Sets in Knowledge Discovery 2, volume 2, pages 471-487. Physica-Verlag, Heidelberg, Germany.
Download


Paper Citation


in Harvard Style

Pancerz K., Paja W., Szkoła J., Warchoł J. and Olchowik G. (2012). A RULE-BASED CLASSIFICATION OF LARYNGOPATHIES BASED ON SPECTRUM DISTURBANCE ANALYSIS - An Exemplary Study . In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2012) ISBN 978-989-8425-89-8, pages 458-461. DOI: 10.5220/0003874304580461


in Bibtex Style

@conference{biosignals12,
author={Krzysztof Pancerz and Wiesław Paja and Jarosław Szkoła and Jan Warchoł and Grażyna Olchowik},
title={A RULE-BASED CLASSIFICATION OF LARYNGOPATHIES BASED ON SPECTRUM DISTURBANCE ANALYSIS - An Exemplary Study},
booktitle={Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2012)},
year={2012},
pages={458-461},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003874304580461},
isbn={978-989-8425-89-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2012)
TI - A RULE-BASED CLASSIFICATION OF LARYNGOPATHIES BASED ON SPECTRUM DISTURBANCE ANALYSIS - An Exemplary Study
SN - 978-989-8425-89-8
AU - Pancerz K.
AU - Paja W.
AU - Szkoła J.
AU - Warchoł J.
AU - Olchowik G.
PY - 2012
SP - 458
EP - 461
DO - 10.5220/0003874304580461