BAYESIAN SUPERVISED IMAGE CLASSIFICATION BASED ON A PAIRWISE COMPARISON METHOD

F. Calle-Alonso, J. P. Arias-Nicolás, C. J. Pérez, J. Martín

Abstract

In this work, a novel classification method is proposed. The method uses a Bayesian regression model in a pairwise comparison framework. As a result, we obtain an automatic classification tool that allows new cases to be classified without the interaction of the user. The differences with other classification methods, are the two innovative relevance feedback tools for an iterative classification process. The first one is the information obtained from user after validating the results of the automatic classification. The second difference is the continuous adaptive distribution of the model’s parameters. It also has the advantage that can be used with problems with both a large number of characteristics and few number of elements. The method could be specially helpful for those professionals who have to make a decision based on images classification, such as doctors to determine the diagnosis of patients, meteorologists, traffic police to detect license plate, etc.

References

  1. Arias-Nicolás, J. P. and Calle-Alonso, F. (2010). A novel content-based image retrieval system based on bayesian logistic regression. In 18th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision'2010 (WSCG'2010) Poster proceedings, pages 19-22, PLZEN, Czech Republic. UNION Agency, Science Press.
  2. Arias-Nicolás, J. P., Calle-Alonso, F., and Horrillo-Sierra, I. (2007a). Qatris imanager, un sistema cbir basado en regresión logística. Boletín de Estadística e Investigación Operativa, 23(2):9-13.
  3. Arias-Nicolás, J. P., Pérez, C. J., and Martín, J. (2007b). A logistic regression-based pairwise comparison method to aggregate preferences. Group Decision and Negotiation, 17(3):237-247.
  4. Belkasim, S. O., Shridhar, M., and Ahmadi, M. (1991). Pattern recognition with moment invariants: A comparative study and new results. Pattern Recognition, 24(12):1117-1138.
  5. Chen, M. H., Spiegelhalter, D., Thomas, A., and Best, N. (2000). The BUGS Project. MRC Biostatistics Unit, Cambridge, UK, http://www.mrcbsu.cam.ac.uk/bugs/winbugs/contents.shtml.
  6. Chorás, R. S. (2003). Content-based retrieval using color, texture and shape information. Lecture Notes in Computer Sciences, 2905:619-626.
  7. de la Escalera, A. (2001). Visión por Computador, Fundamentos y Métodos. Prentice-Hall.
  8. El-Naqa, I., Yang, Y., Galatsanos, N. P., Nishikawa, R. M., and Wernick, M. N. (2004). A similarity learning approach to content-based image retrieval: application to digital mammography. IEEE Transactions on Medical Imaging, 23(10):1233-1244.
  9. Estrela da Silva, J., Marques de Sá, J. P., and Jossinet, J. (2000). Classification of breast tissue by electrical impedance spectroscopy. Medical and Biological Engineering and Computing, 38:26-30.
  10. Fix, E. and Hodges, J. L. (1951). Discriminatory analysis, nonparametric discrimination consistency properties. Technical Report 4, USAF School of Aviation Medicine.
  11. Galloway, M. M. (1975). Texture analysis using grey level run lengths. Computer Graphics and Image Processing, 4:172-179.
  12. Haralick, R. M. and Shapiro, L. G. (1993). Computer and Robot Vision Vol.I. Addison-Wesley.
  13. Jai, A. K., Duin, R., and Mao, J. (2000). Statistical pattern recognition: A review. IEEE Transaction on pattern and machine intelligence, 22(1):4-37.
  14. Jossinet, J. (1998). The impedivity of freshly excised human breast tisue. Physiology Measures, 19:61-75.
  15. Jossinet, J. and Lavandier, B. (1998). The discrimination of excised cancerous breast tissue samples using impedance spectroscopy. Bioelectrochemistry and bioenergetics, 45:161-167.
  16. McCullagh, P. and Nelder, J. A. (1989). Generalized Lineal Models. Monographs on Statistics and Applied Probability. Chapman and Hall.
  17. Schürmann, J. (1996). Pattern Classification: A Unified View of Statistical and Neural Approaches. Wiley and sons.
  18. Smeulders, A., Worring, M., Santini, S., Gupta, A., and Jain, R. (2000). Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(12):1349- 1380.
  19. Smith, A. R. (19'). Color gamut transform pairs. SIGGRAPH'' Proceedings of the 5th annual conference on Computer graphics and interactive techniques, pages 12-19.
  20. Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and van der Linde, A. (2002). Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society, Series B (Statistical Methodology), 64(4):583-639.
  21. Swain, P. H. and Hauska, H. (1977). The decision tree classifier: design and potential. IEEE Transaction on Geoscience and remote Sensing, GE-15:142-147.
  22. Theodoridis, S. and Koutroumbas, K. (2003). Recognition. Elsevier Academia, 4th edition.
  23. Tversky, A. (1977). Features of similarity. Psychological Review, 84(4):327-352.
  24. Zellner, A. and Rossi, P. (1994). Bayesian analysis of dichotomous quantal response models. Journal of Econometrics, 25(3):365-393.
Download


Paper Citation


in Harvard Style

Calle-Alonso F., P. Arias-Nicolás J., J. Pérez C. and Martín J. (2012). BAYESIAN SUPERVISED IMAGE CLASSIFICATION BASED ON A PAIRWISE COMPARISON METHOD . In Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods - Volume 1: IATMLRP, (ICPRAM 2012) ISBN 978-989-8425-98-0, pages 467-473. DOI: 10.5220/0003876004670473


in Bibtex Style

@conference{iatmlrp12,
author={F. Calle-Alonso and J. P. Arias-Nicolás and C. J. Pérez and J. Martín},
title={BAYESIAN SUPERVISED IMAGE CLASSIFICATION BASED ON A PAIRWISE COMPARISON METHOD},
booktitle={Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods - Volume 1: IATMLRP, (ICPRAM 2012)},
year={2012},
pages={467-473},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003876004670473},
isbn={978-989-8425-98-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods - Volume 1: IATMLRP, (ICPRAM 2012)
TI - BAYESIAN SUPERVISED IMAGE CLASSIFICATION BASED ON A PAIRWISE COMPARISON METHOD
SN - 978-989-8425-98-0
AU - Calle-Alonso F.
AU - P. Arias-Nicolás J.
AU - J. Pérez C.
AU - Martín J.
PY - 2012
SP - 467
EP - 473
DO - 10.5220/0003876004670473