BRIDGING THE GAP BETWEEN DESIGN AND REALITY - A Dual Evolutionary Strategy for the Design of Synthetic Genetic Circuits

J. S. Hallinan, A. Wipat, S. Park

Abstract

Computational design is essential to the field of synthetic biology, particularly as its practitioners become more ambitious, and system designs become larger and more complex. However, computational models derived from abstract designs are unlikely to behave in the same way as organisms engineered from those same designs. We propose an automated, iterative strategy involving evolution both in silico and in vivo, with feedback between strands as necessary, combined with automated reasoning. This system can help bridge the gap between the behaviour of computational models and that of engineered organisms in as rapid and cost-effective a manner as possible.

References

  1. Aharoni, A., L. Gaiducov, et al. (2005). "The 'evolvability' of promiscuous protein functions." Nature Genetics 37(1): 73 - 76.
  2. Beal, J., T. Lu, et al. (2011). "Automatic compilation from high-level biologically-oriented programming language to genetic regulatory networks." PLoS ONE 6(8): e22490.
  3. Box, G. E. P. (1957). "Evolutionary operation: A method for increasing industrial productivity." Applied Statistics 6(2): 81 - 101.
  4. Brustad, E. M. and F. H. Arnold (2011). "Optimizing nonnatural protein function with directed evolution." Current Opinion in Chemical Biology 15(2): 201 - 210.
  5. Cello, J., A. V. Paul, et al. (2002). "Chemical synthesis of poliovirus cDNA: Generation of infectious virus in the absence of natural template." Science 297(5583): 1016 - 1018.
  6. Chandran, D., F. T. Bergmann, et al. (2009) "TinkerCell: modular CAD tool for synthetic biology." Journal of Biological Engineering 3 DOI: doi:10.1186/1754- 1611-3-19.
  7. Church, G. M. (2005). "From systems biology to synthetic biology." Molecular Systems Biology 1: 0032.
  8. Cohen, J. (2008). "The crucial role of CS in systems and synthetic biology." Transactions of the ACM 51(5): 15 - 18.
  9. Cooling, M. T., P. Hunter, et al. (2008). "Modelling biological modularity with CellML." Systems Biology, IET 2(2): 73-79.
  10. Craddock, T., C. R. Harwood, et al. (2008). "e-Science: Relieving bottlenecks in large-scale genomic analyses." Nature Reviews Microbiology 6: 948 - 954.
  11. Czar, M., Y. Cai, et al. (2009). "Writing DNA with GenoCAD." Nucleic Acids Research 37(W40-7).
  12. Felton, M. J. (2003). "Product review: Liquid handling: Dispensing reliability." Analytical Chemistry 75(17): 397A - 399A.
  13. Ferry, M. S., I. A. Razinkov, et al. (2011). "Microfluidics for synthetic biology: From design to execution." Methods in Enzymology 497: 295 - 372.
  14. Galperin, M. Y. and G. R. Cochrane (2011). "The 2011 Nucleic Acids Research database issue and the online molecular biology database collection." Nucleic Acids Research 39(Suppl 1).
  15. Gibson, D. G., J. I. Glass, et al. (2010). "Creation of a bacterial cell controlled by a chemically synthesized genome." Science 329(5987): 52 - 56.
  16. Gilman, A. and J. Ross (1995). "Genetic-algorithm selection of a regulatory structure that directs flux in a simple metabolic model." Biophysical Journal 69(4): 1321 - 1333.
  17. Gulati, S., V. Rouilly, et al. (2009). "Opportunities for microfluidic technologies in synthetic biology." Journal of the Royal Society Interface 6(Suppl_4): S493-S506.
  18. Hallinan, J., G. Misirli, et al. (2010). Evolutionary computation for the design of a stochastic switch for synthetic genetic circuits. 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2010), Buenos Aires, Argentina.
  19. Hallinan, J. and J. Wiles (2002). Evolutionary algorithms. The Encyclopedia of Cognitive Sciences. L. Nadel. New York, Palgrave Macmillan.
  20. Hucka, M., A. Finney, et al. (2003). "The systems biology markup language (SBML): A medium for representation and exchange of biochemical network models." Bioinformatics 19: 524-531.
  21. Khalil, A. S. and J. J. Collins (2010). "Synthetic biology: Applications come of age." Nature Reviews Genetics 11(5): 367 - 379.
  22. King, R. D., J. Rowland, et al. (2009). "The Automation of Science." Science 324(5923): 85-89.
  23. King, R. D., K. E. Whelan, et al. (2004). "Functional genomic hypothesis generation and experimentation by a robot scientist." Nature 427(6971): 247-252.
  24. Kohler, J., J. Baumbach, et al. (2006). "Graph-based analysis and visualization of experimental results with ONDEX." Bioinformatics 22(11): 1383-1390.
  25. Lee, S. K., H. Chou, et al. (2008). "Metabolic engineering of microorganisms for biofuels production: From bugs to synthetic biology to fuels." Current Opinion in Biotechnology 19(6): 556-563.
  26. Misirli, G., J. Hallinan, et al. (2011). CS-TR-1237. Technical Reports, Newcastle University.
  27. Misirli, G., J. S. Hallinan, et al. (2011). "Model annotation for synthetic biology: automating model to nucleotide sequence conversion." Bioinformatics 27(7): 973-979.
  28. Patil, K., I. Rocha, et al. (2005). “Evolutionary programming as a platform for in silico metabolic engineering.” BMC Bioinformatics 6(1): 308.
  29. Pedersen, M. P., A.; (2009). "Towards programming languages for genetic engineering of living cells." Journal of the Royal Society Interface.
  30. Romero, P. A. and F. H. Arnold (2008). "Exploring protein fitness landscapes by directed evolution." Nature Reviews Molecular Cell Biology 10: 866 - 876.
  31. Smith, H. O., C. A. Hutchison, et al. (2003). "Generating a synthetic genome by whole genome assembly: phiX174 bacteriophage from synthetic oligonucleotides." Proceedings of the National Academy of Sciences 100(26): 15440 - 15445.
  32. Sprinzak, D. and M. Elowitz (2005). "Reconstruction of genetic circuits." Nature 438: 443 - 448.
  33. Szita, N., K. Polizzi, et al. (2010). "Microfluidic approaches for systems and synthetic biology." Current Opinion in Biotechnology 21(4): 517-523.
  34. Tumpy, T. M., C. F. Basler, et al. (2005). "Characterisation of the reconstructed 1918 Spanish Influenza pandemic virus." Science 310(5745): 77 - 80.
  35. Vinuselvi, P., S. Park, et al. (2011). "Microfluidic technologies for synthetic biology." International Journal of Molecular Sciences 12(3576 - 3593).
Download


Paper Citation


in Harvard Style

S. Hallinan J., Wipat A. and Park S. (2012). BRIDGING THE GAP BETWEEN DESIGN AND REALITY - A Dual Evolutionary Strategy for the Design of Synthetic Genetic Circuits . In Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2012) ISBN 978-989-8425-90-4, pages 263-268. DOI: 10.5220/0003887002630268


in Bibtex Style

@conference{bioinformatics12,
author={J. S. Hallinan and A. Wipat and S. Park},
title={BRIDGING THE GAP BETWEEN DESIGN AND REALITY - A Dual Evolutionary Strategy for the Design of Synthetic Genetic Circuits},
booktitle={Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2012)},
year={2012},
pages={263-268},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003887002630268},
isbn={978-989-8425-90-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2012)
TI - BRIDGING THE GAP BETWEEN DESIGN AND REALITY - A Dual Evolutionary Strategy for the Design of Synthetic Genetic Circuits
SN - 978-989-8425-90-4
AU - S. Hallinan J.
AU - Wipat A.
AU - Park S.
PY - 2012
SP - 263
EP - 268
DO - 10.5220/0003887002630268