DESCRIPTION PLAUSIBLE LOGIC PROGRAMS FOR STREAM REASONING

Ioan Alfred Letia, Adrian Groza

Abstract

Stream reasoning is defined as real time logical reasoning on large, noisy, heterogeneous data streams, aiming to support the decision process of large numbers of concurrent querying agents. In this research we exploit nonmonotonic rule-based systems for handling inconsistent or incomplete information and also ontologies to deal with heterogeneity. Data is aggregated from distributed streams in real time and plausible rules fire when new data is available. This study also investigates the advantages of lazy evaluation on data streams.

References

  1. Anicic, D., Fodor, P., Rudolph, S., Stühmer, R., Stojanovic, N., and Studer, R. (2010). A rule-based language for complex event processing and reasoning. In Pascal Hitzler, T. L., editor, Web Reasoning and Rule Systems - Fourth International Conference, volume 6333 of LNCS, pages 42-57. Springer.
  2. Barbieri, D., Braga, D., Ceri, S., Della Valle, E., and Grossniklaus, M. (2010). Incremental reasoning on streams and rich background knowledge. In Aroyo, L., Antoniou, G., Hyvnen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., and Tudorache, T., editors, The Semantic Web: Research and Applications, volume 6088 of Lecture Notes in Computer Science, pages 1-15. Springer Berlin / Heidelberg.
  3. Billington, D. and Rock, A. (2001). Propositional plausible logic: Introduction and implementation. Studia Logica, 67(2):243-269.
  4. Bolles, A., Grawunder, M., and Jacobi, J. (2008). Streaming sparql extending sparql to process data streams. In Proceedings of the 5th European semantic web conference on The semantic web: research and applications, ESWC'08, pages 448-462, Berlin, Heidelberg. Springer-Verlag.
  5. Calbimonte, J.-P., Corcho, O ., and Gray, A. J. G. (2010). Enabling ontology-based access to streaming data sources. In Patel-Schneider, P. F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J. Z., Horrocks, I., and Glimm, B., editors, International Semantic Web Conference (1), volume 6496 of Lecture Notes in Computer Science, pages 96-111. Springer.
  6. Corcho, O . and Garcia-Castro, R. (2010). Five challenges for the semantic sensor web. Semantic Web, 1(1- 2):121-125.
  7. Fredrik Heintz, J. K. and Doherty, P. (2009). Stream reasoning in dyknow: A knowledge processing middleware system. In In Stream Reasoning Workshop, Heraklion, Crete.
  8. Gomez, S. A., Chesnevar, C. I., and Simari, G. R. (2010). A defeasible logic programming approach to the integration of rules and ontologies. Journal of Computer Science and Technology, 10(2):74-80.
  9. Grosof, B. N., Horrocks, I., Volz, R., and Decker, S. (2003). Description logic programs: combining logic programs with description logic. In WWW, pages 48-57.
  10. Krötzsch, M., Rudolph, S., and Hitzler, P. (2007). Complexity boundaries for horn description logics. In AAAI, pages 452-457. AAAI Press.
  11. Le-Phuoc, D., Parreira, J. X., Hausenblas, M., and Hauswirth, M. (2010). Unifying stream data and linked open data. Technical report, DERI.
  12. Maher, M. J., Rock, A., Antoniou, G., Billington, D., and Miller, T. (2001). Efficient defeasible reasoning systems. International Journal on Artificial Intelligence Tools, 10(4):483-501.
  13. Palopoli, L., Terracina, G., and Ursino, D. (2003). A plausibility description logic for handling information sources with heterogeneous data representation formats. Annals of Mathematics and Artificial Intelligence, 39:385-430.
  14. Rock, A. (2010). Implementation of decisive plausible logic. Technical report, School of Information and Communication Technology, Griffith University.
  15. Savage, N. (2011). Twitter as medium and message. Commun. ACM, 54:18-20.
  16. Stuckenschmidt, H., Ceri, S., Valle, E. D., and van Harmelen, F. (2010). Towards expressive stream reasoning. In Aberer, K., Gal, A., Hauswirth, M., Sattler, K.- U., and Sheth, A. P., editors, Semantic Challenges in Sensor Networks, number 10042 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik.
  17. Valle, E. D., Ceri, S., van Harmelen, F., and Fensel, D. (2009). It's a streaming world! reasoning upon rapidly changing information. IEEE Intelligent Systems, 24:83-89.
Download


Paper Citation


in Harvard Style

Letia I. and Groza A. (2012). DESCRIPTION PLAUSIBLE LOGIC PROGRAMS FOR STREAM REASONING . In Proceedings of the 4th International Conference on Agents and Artificial Intelligence - Volume 1: IWSI, (ICAART 2012) ISBN 978-989-8425-95-9, pages 560-566. DOI: 10.5220/0003887405600566


in Bibtex Style

@conference{iwsi12,
author={Ioan Alfred Letia and Adrian Groza},
title={DESCRIPTION PLAUSIBLE LOGIC PROGRAMS FOR STREAM REASONING},
booktitle={Proceedings of the 4th International Conference on Agents and Artificial Intelligence - Volume 1: IWSI, (ICAART 2012)},
year={2012},
pages={560-566},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003887405600566},
isbn={978-989-8425-95-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 4th International Conference on Agents and Artificial Intelligence - Volume 1: IWSI, (ICAART 2012)
TI - DESCRIPTION PLAUSIBLE LOGIC PROGRAMS FOR STREAM REASONING
SN - 978-989-8425-95-9
AU - Letia I.
AU - Groza A.
PY - 2012
SP - 560
EP - 566
DO - 10.5220/0003887405600566