SURFACE RECONSTRUCTION FROM 3D MEDICAL IMAGES BASED ON TRI-TREE CONTOURING - Seeking Geometrically Valid Surfaces

Rubén Pulido, Juan J. Jiménez, Félix Paulano

Abstract

Surface reconstruction from 3D medical images is fundamental for bio-medical applications. Nevertheless, the generation of valid geometric surfaces is a difficult task due to the complexity of the structures necessary to represent the human body. In this paper, we describe the main strategies concerning surface reconstruction and planar contour extraction algorithms. In addition, we propose a new approach to surface reconstruction from medical images. Our approach is divided into two main parts. In the first part, contour extraction is performed using a hierarchical spatial decomposition. In the second part, these contours can be triangulated using a table of patterns in order to obtain geometrically valid surfaces.

References

  1. Bade, R., Haase, J., and Preim, B. (2006). Comparison of fundamental mesh smoothing algorithms for medical surface models. In In Simulation und Visualisierung.
  2. Boubekeur, T., Heidrich, W., Granier, X., and Schlick, C. (2006). Volume-surface trees. Computer Graphics Forum (Proceedings of EUROGRAPHICS 2006).
  3. der Bergen, G. V. (2003). Collision Detection in Interactive 3D Environments. Elsevier.
  4. Foley, J., van Dam, A., Feiner, S., and Hughes, J. (1990). Computer Graphics: Principles and Practice, second edition. Addison-Wesley Professional.
  5. Fuchs, H., Kedem, Z. M., and Uselton, S. P. (1977). Optimal surface reconstruction from planar contours. In Proceedings of the 4th annual conference on Computer graphics and interactive techniques, SIGGRAPH 7877, pages 236-236. ACM.
  6. Ganapathy, S. and Dennehy, T. G. (1982). A new general triangulation method for planar contours. SIGGRAPH Comput. Graph., 16:69-75.
  7. Gueziec, A. and Hummel, R. (1995). Exploiting triangulated surface extraction using tetrahedral decomposition. Visualization and Computer Graphics, IEEE Transactions on, 1(4):328 -342.
  8. Hoppe, H. (1996). Progressive Meshes. Computer Graphics, 30:99-108.
  9. Jiménez, J. J., Feito, F. R., and Segura, R. J. (2009). A new hierarchical triangle-based point-in-polygon data structure. Computers & Geosciences, 35(9).
  10. Klein, R., Schilling, A., and Strasser, W. (1999). Reconstruction and simplification of surfaces from contours. In Computer Graphics and Applications, 1999. Proceedings. Seventh Pacific Conference on.
  11. Lorensen, W. E. and Cline, H. E. (1987). Marching cubes: A high resolution 3d surface construction algorithm. Computer Graphics, 21(4):163-169.
  12. Lv, S., Yang, X., Gu, L., Xing, X., Pan, L., and Fang, M. (2009). Delaunay mesh reconstruction from 3d medical images based on centroidal voronoi tessellations. In Computational Intelligence and Software Engineering, 2009. CiSE 2009. Int. Conference on.
  13. Meyers, D., Skinner, S., and Sloan, K. (1992). Surfaces from contours. ACM Trans. Graph., 11:228-258.
  14. Mocanu, B., Tapu, R., Petrescu, T., and Tapu, E. (2011). An experimental evaluation of 3d mesh decimation techniques. In Signals, Circuits and Systems (ISSCS), 2011 10th International Symposium on, pages 1 -4.
  15. Newman, T. S. and Yi, H. (2006). A survey of the marching cubes algorithm. Computers and Graphics (Pergamon), 30(5):854-879.
  16. Nielson, G. and Hamann, B. (1991). The asymptotic decider: resolving the ambiguity in marching cubes. In Visualization, 1991. Visualization 7891, Proceedings., IEEE Conference on, pages 83 -91, 413.
  17. Sachse, F. (2004). 5. digital image processing. In Computational Cardiology, volume 2966 of Lecture Notes in Computer Science, pages 91-118. Springer Berlin / Heidelberg.
  18. Schroeder, W., Martin, K. M., and Lorensen, W. E. (2006). The Visualization Toolkit: An Object-Oriented Approach to 3D Graphics. Kitware, Inc.
  19. Schroeder, W. J., Zarge, J. A., and Lorensen, W. E. (1992). Decimation of triangle meshes.
  20. Zheng, L., Li, G., and Zhu, H. (2008). The generation algorithm of tissue contour lines in medical image. In Bioinformatics and Biomedical Engineering, 2008. ICBBE 2008. The 2nd International Conference on.
Download


Paper Citation


in Harvard Style

Pulido R., J. Jiménez J. and Paulano F. (2012). SURFACE RECONSTRUCTION FROM 3D MEDICAL IMAGES BASED ON TRI-TREE CONTOURING - Seeking Geometrically Valid Surfaces . In Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2012) ISBN 978-989-8565-02-0, pages 175-181. DOI: 10.5220/0003930501750181


in Bibtex Style

@conference{grapp12,
author={Rubén Pulido and Juan J. Jiménez and Félix Paulano},
title={SURFACE RECONSTRUCTION FROM 3D MEDICAL IMAGES BASED ON TRI-TREE CONTOURING - Seeking Geometrically Valid Surfaces},
booktitle={Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2012)},
year={2012},
pages={175-181},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003930501750181},
isbn={978-989-8565-02-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2012)
TI - SURFACE RECONSTRUCTION FROM 3D MEDICAL IMAGES BASED ON TRI-TREE CONTOURING - Seeking Geometrically Valid Surfaces
SN - 978-989-8565-02-0
AU - Pulido R.
AU - J. Jiménez J.
AU - Paulano F.
PY - 2012
SP - 175
EP - 181
DO - 10.5220/0003930501750181