Panayiotis Andreou, Panagiotis Germanakos, Andreas Konstantinidis, Dimosthenis Georgiadis, Marios Belk, George Samaras


Social network portals, such as Facebook and Twitter, often discover and deliver relevant social data to a user’s query, considering only system-oriented conflicting objectives (e.g., time, energy, recall) and frequently ignoring the satisfaction of the individual “needs” of the query user w.r.t. its perceptual preference characteristics (e.g., data comprehensibility, working memory). In this paper, we introduce User-centric Social Network (USN), a novel framework that deals with the conflicting system-oriented objectives of the social network in the context of Multi-Objective Optimization and utilizes user-oriented objectives in the query dissemination/ acquisition process to facilitate decision making. We present the initial design of the USN framework and its major components. Our preliminary evaluation with real datasets shows that USN enhances the usability and satisfaction of the user while in parallel provides optimal system-choices for network performance.


  1. Andreou, P., Zeinalipour-Yazti, D., Pamboris, A., Chrysanthis, P., and Samaras, G. (2011). Optimized query routing trees for wireless sensor networks. Information Systems Journal, 36(2):267-291.
  2. Brusilovsky, P. (2001). Adaptive hypermedia. User Modeling and User-Adapted Interaction, 11:87-110.
  3. Chaudhuri, S. and Deb, K. (2010). An interactive evolutionary multi-objective optimization and decision making procedure. Applied Soft Computing, 10(2):496-511.
  4. Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA II. IEEE TEC, 6(2):182-197.
  5. Germanakos, P., Tsianos, N., Lekkas, Z., Mourlas, C., and Samaras, G. (2008). Realizing comprehensive user profile as the core element of adaptive and personalized communication environments and systems. The Computer Journal, 52(7):749-770.
  6. Graf, S. and Kinshuk (2009). Advanced adaptivity in learning management systems by considering learning styles. In IEEE/WIC/ACM, volume 3.
  7. Konstantinidis, A., Charalambous, C., Zhou, A., and Zhang, Q. (2010a). Multi-objective mobile agent-based sensor network routing using MOEA/D. In IEEE CEC.
  8. Konstantinidis, A., Yang, K., Zhang, Q., and ZeinalipourYazti, D. (2010b). A multi-objective evolutionary algorithm for the deployment and power assignment problem in wireless sensor networks. Elsevier Computer Networks, 54:960-976.
  9. Lankhorst, M., Kranenburg, A. S., and Peddemors, A. (2002). Enabling technology for personalizing mobile services. In HICSS, volume 3, page 87.
  10. Zhang, Q. and Li, H. (2007). MOEA/D: A multi-objective evolutionary algorithm based on decomposition. IEEE TECC, 11(6):712-731.

Paper Citation

in Harvard Style

Andreou P., Germanakos P., Konstantinidis A., Georgiadis D., Belk M. and Samaras G. (2012). TOWARDS USER-CENTRIC SOCIAL NETWORKS . In Proceedings of the 8th International Conference on Web Information Systems and Technologies - Volume 1: WEBIST, ISBN 978-989-8565-08-2, pages 795-798. DOI: 10.5220/0003932007950798

in Bibtex Style

author={Panayiotis Andreou and Panagiotis Germanakos and Andreas Konstantinidis and Dimosthenis Georgiadis and Marios Belk and George Samaras},
booktitle={Proceedings of the 8th International Conference on Web Information Systems and Technologies - Volume 1: WEBIST,},

in EndNote Style

JO - Proceedings of the 8th International Conference on Web Information Systems and Technologies - Volume 1: WEBIST,
SN - 978-989-8565-08-2
AU - Andreou P.
AU - Germanakos P.
AU - Konstantinidis A.
AU - Georgiadis D.
AU - Belk M.
AU - Samaras G.
PY - 2012
SP - 795
EP - 798
DO - 10.5220/0003932007950798