A NEW VISUALIZATION METAPHOR FOR ASSOCIATION RULES

Zohra Ben Said, Fabrice Guillet, Paul Richard, Fabien Picarougne, Julien Blanchard

Abstract

In order to discover knowledge from large amount of results generated by the association rules extraction algorithms, visual representations of association rules can be very beneficial to the user. Those representations support the user in finding and validating interesting knowledge. All techniques proposed for association rule visualization have been developed to represent association rule as a hole without paying attention to the relations between attributes and the contribution of each one. In this article, we propose a new visualization metaphor for association rules. This new metaphor represents attributes which make up the antecedent and the consequent, the contribution of each one to the rule, and the correlations between each pair of antecedent and consequent.

References

  1. Agrawal, R., Imielinski, T., and Swami, A. (1993). Mining association rules between sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD international conference on Management of data, pages 207 - 216.
  2. Bertin, J. (1984). Semiology of Graphics: Diagrams, Networks, Maps. University of Wisconsin Press.
  3. Blanchard, J., Guillet, F., and Briand, H. (2007). Interactive visual exploration of association rules with rule-focusing methodology. Knowledge and Information Systems, 13(1):43-75.
  4. Bruzzese, D. and Buono, P. (2004). Combining visual techniques for association rules exploration. In AVI'04: Proceedings of the working conference on Advanced visual interfaces, pages 381-384, New York, NY, USA. ACM.
  5. Chanda, P., and A. Zhang, J. Y., and Ramanathan, M. (2010). On Mining Statistically Significant Attribute Association Information. In SDM, pages 141-152.
  6. Couturier, O., Hamrouni, T., Yahia, S. B., and Nguifo, E. M. (2007). A scalable association rule visualization towards displaying large amounts of knowledge. In IV'07: Proceedings of the 11th International Conference Information Visualization, pages 657-663, Washington, DC, USA. IEEE Computer Society.
  7. Freitas, A. A. (1998). On objective measures of rule surprisingness. pages 1-9.
  8. Freitas, A. A. (2001). Understanding the crucial role of attributeinteraction in data mining. Artif. Intell. Rev., 16(3):177-199.
  9. Gordal and Demiriz, A. (2006). A framework for visualizing association mining results. Lecture Notes in Computer Science, pages 593-602.
  10. Hendley, R. J., Drew, N. S., Wood, A. M., and Beale, R. (1999). Narcissus: visualising information. In Proceedings of the IEEE Symposium on Information Visualization (INFOVIS 7895), pages 90-96. Morgan Kaufmann Publishers Inc.
  11. Imielinski, T. and Virmani, A. (1998). Association rules... and what's next? - towards second generation data mining systems. Advances in Databases and Information Systems, 1475:6.
  12. Kopanakis, I. and Theodoulidis, B. (2003). Visual data mining modeling techniques for the visualization of mining outcomes. Journal of Visual Languages & Computing, 14(6):543-589.
  13. Liu, Y. and Salvendy, G. (2006). Design and evaluation of visualization support to facilitate association rules modeling. International Journal of Human Computer Interaction, 21(1):15-38.
  14. Provost, F. J. and Aronis, J. M. (1996). Scaling up inductive learning with massive parallelism. Machine Learning, 3(1):33-46.
  15. Simoff, S. J., Bö hlen, M. H., and Mazeika, A. (2008). Visual data mining. Chapter Visual Data Mining: An Introduction and Overview, pages 1-12. SpringerVerlag, Berlin, Heidelberg.
Download


Paper Citation


in Harvard Style

Ben Said Z., Guillet F., Richard P., Blanchard J. and Picarougne F. (2012). A NEW VISUALIZATION METAPHOR FOR ASSOCIATION RULES . In Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2012) ISBN 978-989-8565-02-0, pages 803-808. DOI: 10.5220/0003949308030808


in Bibtex Style

@conference{ivapp12,
author={Zohra Ben Said and Fabrice Guillet and Paul Richard and Julien Blanchard and Fabien Picarougne},
title={A NEW VISUALIZATION METAPHOR FOR ASSOCIATION RULES},
booktitle={Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2012)},
year={2012},
pages={803-808},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003949308030808},
isbn={978-989-8565-02-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2012)
TI - A NEW VISUALIZATION METAPHOR FOR ASSOCIATION RULES
SN - 978-989-8565-02-0
AU - Ben Said Z.
AU - Guillet F.
AU - Richard P.
AU - Blanchard J.
AU - Picarougne F.
PY - 2012
SP - 803
EP - 808
DO - 10.5220/0003949308030808