How to Use an Adaptive High-gain Observer in Diagnosis Problems

Frédéric Lafont, Jean-François Balmat, Nathalie Pessel, Jean-Paul Gauthier

Abstract

This paper explains how to use an adaptive High-Gain observer in sensor diagnosis problems. This type of observer allows to switch between a classical Extended Kalman Filter and High-Gain observer according to an innovation function. Combined with a standard technique of residual generation, this approach is very efficient to determine fault occurence in the non-linear dynamical systems. We present the obtained results on a wastewater treatment system.

References

  1. Alcaraz-Gonzalez, V., Harmand, J., Rapaport, A., Steyer, J.- P., Gonzalez-Alvarez, V., and Pelayo-Ortiz, C. (2002). Software sensors for highly uncertain wwtps : a new approach based on interval observers. Water Research, 36:2515-2524.
  2. Assis, A. and Filho, R. (2000). Soft sensors development for on-line bioreactor state estimation. Computers and Chemical Engineering, 24:1099-1103.
  3. Boizot, N., Busvelle, E., and Gauthier, J.-P. (2010). An adaptive high-gain observer for nonlinear systems. Automatica, 469:1483-1488.
  4. Chachuat, B. (2001). Methodology of dynamic optimisation and optimal control of small-size activated sludge wastewater treatment plants. PhD, Institut National Polytechnique de Lorraine, Nancy.
  5. Dochain, D. (2008). Bioprocess control. volume ISBN 9781848210257. ISTE.
  6. Henze, M., Grady, C., Gujer, W., Marais, G., and Matsuo, T. (1987). Activated sludge model n1. In IAWQ, editor, Technical Report 1. London.
  7. http://www.benchmarkwwtp.org/ (2011).
  8. Lafont, F., Busvelle, E., and Gauthier, J.-P. (2011). An adaptive high-gain observer for wastewater treatment systems. Journal of Process Control, 21:893-900.
  9. Methnani, S., Gauthier, J.-P., and Lafont, F. (2011). Sensor fault reconstruction and observability for unknown inputs, with an application to wastewater treatment plants. International Journal of Control, 84.4:822- 833.
  10. Nejjari, F., Puig, V., Giancristofaro, L., and Koehler, S. (July 6-11, 2008). Extended luenberger observerbased fault detection for an activated sludge process. Proceedings of the 17th World Congress The International Federation of Automatic Control, Seoul, Korea, pages 9725-9730.
  11. Sotomayor, O., Park, S., and Garcia, C. (2002). Software sensor for on-line estimation of the microbial activity in activated sludge systems. ISA Transactions, 41:127-143.
Download


Paper Citation


in Harvard Style

Lafont F., Balmat J., Pessel N. and Gauthier J. (2012). How to Use an Adaptive High-gain Observer in Diagnosis Problems . In Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-8565-22-8, pages 185-190. DOI: 10.5220/0003984501850190


in Bibtex Style

@conference{icinco12,
author={Frédéric Lafont and Jean-François Balmat and Nathalie Pessel and Jean-Paul Gauthier},
title={How to Use an Adaptive High-gain Observer in Diagnosis Problems},
booktitle={Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2012},
pages={185-190},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003984501850190},
isbn={978-989-8565-22-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - How to Use an Adaptive High-gain Observer in Diagnosis Problems
SN - 978-989-8565-22-8
AU - Lafont F.
AU - Balmat J.
AU - Pessel N.
AU - Gauthier J.
PY - 2012
SP - 185
EP - 190
DO - 10.5220/0003984501850190