Differential Evolution in Parameter Identification - Fuel Cell as an Example

Aki Sorsa, Anssi Koskenniemi, Kauko Leiviskä

Abstract

Evolutionary algorithms are optimization methods and their basic idea lies in biological evolution. They suit well for large and complex optimization problems. In this study, differential evolution is applied for identifying the parameters of the nonlinear fuel cell model. Different versions of the algorithm are used to compare the genetic operators they use. One problem with the studied algorithms is also in defining the internal parameters that regulate the development of the population. In this paper, entropy is used for defining the population size and other parameters are tuned using recommendations from the literature and by trial-and-error. The results show that DE/rand-to-best/1/bin is the most suitable algorithm for the studied problem. Selection of the crossover operator has no considerable effect on the results. The results also show that the studied identification problem has a lot of local minima that are very close to each other that makes the optimization problem even more challenging.

References

  1. Bergey P. K. Ragsdale C. Modified differential evolution: a greedy random strategy for genetic recombination. Omega 2005; 33: 255-65.
  2. Chakraborty, U. K., Abbott, T. E., Das, S. K. PEM fuel cell modeling using differential evolution. Energy 2012; 40: 1, 387 - 399.
  3. Chipperdale A. Introduction to genetic algorithms. In: Zalzala AMS, Fleming PJ, editors. Genetic algorithms in engineering systems, Stevenage, Herts: The Institution of Electrical Engineers; 1997, p. 1-45.
  4. Cover TM, Thomas JA. Elements of Information Theory. Hoboken, N.J.: Wiley; 2005.
  5. Fan H. Y, Lampinen J. A Trigonometric Mutation Operation to Differential Evolution. J Global Optimiz. 2003; 27: 105-29.
  6. Feoktistov V., Janaqi S. Generalization of the strategies in differential evolution. In: Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS'04), Santa Fe, New Mexico: IEEE Press; 2004, 165a, 2004.
  7. Ikonen E, Najim K. Advanced process identification and control. New York: Marcel Dekker; 2002.
  8. Katare S., Bhan A., Caruthers J. M., Delgass W. N., Venkatasubramanian V. A hybrid genetic algorithm for efficient parameter estimation of large kinetic models. Comput. Chem. Eng. 2004; 28: 2569-81.
  9. Larminie J., Dicks A. Fuel cell systems explained, 2nd edition. West Sussex, England: John Wiley & Sons Ltd; 2003.
  10. Mann R. F., Amphlett J. C., Hooper MAI, Jensen H, M,, Peppley BA, Roberge PR. Development and application of a generalised steady-state electrochemical model for a PEM fuel cell. J Power Sources 2000; 86: 173-80.
  11. Mo Z. J., Zhu X. J., Wei L. Y., Cao G. Y.. Parameter optimization for a PEMFC model with a hybrid genetic algorithm. Int. Journal Energy Res. 2006; 30: 585-97.
  12. Ohenoja M., Leiviskä K.: Validation of genetic algorithm results in a fuel cell model. Int. J Hydrogen Energy 2010; 35: 618-25.
  13. Pant M., Ali M., Abraham A.. Mixed Mutation Strategy Embedded Differential Evolution. In: 2009 IEEE Congress on Evolutionary Computation, Trondheim, Norway: IEEE Press; 2009, p. 1240-6.
  14. Price K. V. Differential evolution: a fast and simple numerical optimizer. In: Smith M.H. et al. (eds.): Proceedings of the 1996 Biennial Conference of the North American Fuzzy Information Processing Society - NAFIPS, Berkeley. 524-527.
  15. Price K. V., Storn R. M., Lampinen J A. Differential evolution: a practical approach to global optimization. Berlin, Springer: 2005.
  16. Sarker R, Kamruzzaman J, Newton C. Evolutionary Optimization (EvOpt): A Brief Review and Analysis. Int. J Comp. Intell. Appl. 2003; 3: 311-30.
  17. Sorsa A. Koskenniemi A. Leiviskä K. Evolutionary algorithms in nonlinear model identification. Control Engineering Laboratory, University of Oulu. Report A44, 2010.
  18. Sorsa A, Leiviskä K. Parameter identification of a fuel cell model with genetic algorithms In: Proceedings of the 51st Conference on Simulation and Modelling, SIMS 2011, October 14-15, Oulu, Finland; 2010, 6p.
  19. Storn R, Price K. Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. J Global Optimiz. 1997; 11: 341- 59.
  20. Storn R, Price K. Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces. International Computer Science Institute, University of California: Technical Report TR-95-012; 1995.
  21. Storn R. and Price K. (1996) Minimizing the real functions of the ICEC'96 contest by differential evolution. In: Proceedings of the 1996 IEEE international conference on evolutionary computation, Nagoya. 842-844.
  22. Storn R. and Price K. (1997) Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization 11, 341-359.
  23. Tvrdík J. Adaptation in differential evolution: A numerical comparison. Applied Soft Comput. 2009; 9: 1149-55.
  24. Wolf D, Moros R. Estimating rate constants of heterogeneous catalytic reactions without supposition of rate determining surface steps - and application of a genetic algorithm. Chem. Eng. Sci. 1997; 52: 2589-99.
  25. Zaharie D. (2009) Influence of crossover on the behavior of Differential Evolution Algorithms. Applied Soft Computing 9, 1126-1138.
  26. Zaharie D. Critical Values for the Control Parameters of Differential Evolution Algorithms. In: Matousek R, Osmera P, editors. Proceedings of Mendel 2002, 8th International Conference on Soft Computing, Brno; 2002, p. 62-7.
Download


Paper Citation


in Harvard Style

Sorsa A., Koskenniemi A. and Leiviskä K. (2012). Differential Evolution in Parameter Identification - Fuel Cell as an Example . In Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-8565-21-1, pages 40-49. DOI: 10.5220/0004013300400049


in Bibtex Style

@conference{icinco12,
author={Aki Sorsa and Anssi Koskenniemi and Kauko Leiviskä},
title={Differential Evolution in Parameter Identification - Fuel Cell as an Example},
booktitle={Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2012},
pages={40-49},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004013300400049},
isbn={978-989-8565-21-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - Differential Evolution in Parameter Identification - Fuel Cell as an Example
SN - 978-989-8565-21-1
AU - Sorsa A.
AU - Koskenniemi A.
AU - Leiviskä K.
PY - 2012
SP - 40
EP - 49
DO - 10.5220/0004013300400049