Sigmapoint Approach for Robust Optimization of Nonlinear Dynamic Systems

Sebastian Recker, Peter Kühl, Moritz Diehl, Hans Georg Bock

Abstract

Mathematical models describing dynamic processes contain parametric uncertainties. Robust model-based optimization thus becomes a challenging task in process engineering. Current approaches either require high computational effort or they make use of oversimplified approximations that do not capture changes in the solution structure due to nonlinear effects of the uncertain parameters on the states of the process. In this paper we propose an improved optimization approach that uses sigmapoints to characterize the space of uncertain parameters. Propagating sigmapoints through the process model and directly using them in the optimization problem allows to capture relevant nonlinearities for the uncertain parameters. Main advantages of this simple yet elegant approach are the relatively low computational burden and the independence from the optimizer, as no further derivatives are needed. The approach is applied to two examples from process engineering, a batch distillation and a semibatch reactor.

References

  1. Arellano-Garcia, H., Martini, W., Wendt, M., Li, P., and Wozny, G. (2003). Chance constrained batch distillation process optimization under uncertainty. In IE Grossmann, CM McDonald (Eds.): Proc. FOCAPO 2003, pages 609-612.
  2. Ben-Tal, A. and Nemirovski, A. (1999). Robust solutions of uncertain linear programs. Operations Research Letters, 25(1):1-14.
  3. Blankenship, J. and Falk, J. (1976). Infinitely constrained optimization problems. Journal of Optimization Theory and Applications, 19(2):261-281.
  4. Bock, H. and Plitt, K. (1984). A Multiple Shooting algorithm for direct solution of optimal control problems. In Proceedings of the 9th IFAC World Congress, pages 243-247. Pergamon Press.
  5. Diehl, M., Bock, H., and Kostina, E. (2006). An approximation technique for robust nonlinear optimization. Mathematical Programming, 107(1):213-230.
  6. Diehl, M., Gerhard, J., Marquardt, W., and Mnnigmann, M. (2008). Numerical solution approaches for robust nonlinear optimal control problems. Computers and Chemical Engineering, 32(6):1287-1300.
  7. Heine, T., Kawohl, M., and King, R. (2006). Robust model predictive control using the unscented transformation. In Control Applications CCA, pages 224-230. Pergamon Press.
  8. Hettich, R. and Kortanek, K. O. (1993). Semi-Infinite Programming: Theory, Methods, and Applications. SIAM Review, 35(3):380-429.
  9. Julier, S. and Uhlmann, J. (1996). A general method for approximating nonlinear transformations of probability distributions. Dept. of Engineering Science, University of Oxford, Tech. Rep.
  10. Julier, S. and Uhlmann, J. (1997). A new extension of the Kalman filter to nonlinear systems. In Int. Symp. Aerospace/Defense Sensing, Simul. and Controls, volume 3, page 26. Citeseer.
  11. Kuehl, P., Milewska, A., Diehl, M., Molga, E., and Bock, H. (2005). NMPC for runaway-safe fed-batch reactors. In Proc. Int. Workshop on Assessment and Future Directions of NMPC, pages 467-474.
  12. Leineweber, D., Bauer, I., Bock, H., and Schlder, J. (2003a). An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization. Part 1: theoretical aspects. Computers and chemical engineering, 27(2):157-166.
  13. Leineweber, D., Schfer, A., Bock, H., and Schlder, J. (2003b). An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization. Part II: Software aspects and applications. Computers and chemical engineering, 27(2):167 - 174.
  14. Li, P., Arellano-Garcia, H., and Wozny, G. (2008). Chance constrained programming approach to process opti-
Download


Paper Citation


in Harvard Style

Recker S., Kühl P., Diehl M. and Georg Bock H. (2012). Sigmapoint Approach for Robust Optimization of Nonlinear Dynamic Systems . In Proceedings of the 2nd International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH, ISBN 978-989-8565-20-4, pages 199-207. DOI: 10.5220/0004026401990207


in Bibtex Style

@conference{simultech12,
author={Sebastian Recker and Peter Kühl and Moritz Diehl and Hans Georg Bock},
title={Sigmapoint Approach for Robust Optimization of Nonlinear Dynamic Systems},
booktitle={Proceedings of the 2nd International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,},
year={2012},
pages={199-207},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004026401990207},
isbn={978-989-8565-20-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 2nd International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,
TI - Sigmapoint Approach for Robust Optimization of Nonlinear Dynamic Systems
SN - 978-989-8565-20-4
AU - Recker S.
AU - Kühl P.
AU - Diehl M.
AU - Georg Bock H.
PY - 2012
SP - 199
EP - 207
DO - 10.5220/0004026401990207