False Positive Outliers Rejection for Improving Image Registration Accuracy - Application to Road Traffic Aerial Sequences

Ines Hadj Mtir, Khaled Kaâniche, Pascal Vasseur, Mohamed Chtourou

Abstract

The objective of our system is to detect vehicles from aerial sequences. Theses sequences are taken from a camera mounted on UAV which flies over roads and highways. Our approach is to firstly compensate the motion introduced by the dynamic behaviour of the camera. This leads us to a problem of image registration. The moving regions (vehicles) are after that extracted using residual motion. The aim of this paper is to present a combined method for features matching and outliers rejection to increase the accuracy of the registration phase. We use first, the SIFT descriptors and then outliers are rejected using geometric constraints. This leads to a better registration and a minimum of false alarms in the detection phase.

References

  1. Azzari P., 2007. General purpose real-time image mosaicing, appeared in the poster session of ICVSS.
  2. Bay H., Tuytelaars T., Gool L.V., 2006. SURF: Speeded Up Robust Features, Proceedings of the ninth European Conference on Computer Vision. 404-417.
  3. Besl P., Mckay N.,1992. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell., vol. 14, no. 2, 239-256.
  4. Brown M., and Lowe D. G., 2002. Invariant features from interest point groups. British Machine Vision Conference, BMVC 2002, Cardiff, Wales. 656-665.
  5. Govender, N. 2009. Evaluation of feature detection algorithms for structure from motion. 3rd Robotics and Mechatronics Symposium (ROBMECH). Pretoria, South Africa, 8-10,4.
  6. Kang P., Ma H., 2011. An Automatic Airborne Image Mosaicing Method Based on the SIFT Feature Matching. Multimedia Technology (ICMT), 155-159.
  7. Ke, Y., Sukthankar, R., 2004. PCA-SIFT: A More Distinctive Representation for Local Image Descriptors. Computer Vision and Pattern Recognition, 506- 513.
  8. Lazebnik, S., Schmid, C., and Ponce, J. 2004, Semi-Local Affine Parts for Object Recognition, Proceedings of the British Machine Vision Conference, 779-788.
  9. Liu Z. An J., Jing Y., 2012. A Simple and Robust Feature Point Matching Algorithm Based on Restricted Spatial Order Constraints for Aerial Image Registration. Geoscience and Remote Sensing, IEEE Transactions V (50) Issue: 2, 514-527.
  10. Lowe, D. G., 2004. Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, 60, 2, 91-110.
  11. Luo B., Hancock E. R., 2001. Structural graph matching using the EM algorithm and singular value decomposition, IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 10, 1120-1136.
  12. Martin A. Fischler, R., Bolles, C., 1981. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography, Comm. Of the ACM, vol. 24, 381-395.
  13. Medioni G., Cohen I., Bremond F., Hongeng S., and Nevatia R., 2001. Event detection and analysis from video streams, IEEE Trans. Pattern Analysis and Machine Intelligence, 873-889.
  14. Mikolajczyk, K., Schmid, C., 2005. A performance evaluation of local descriptors, IEEE Transactions on Pattern Analysis and Machine Intelligence, 10, 27, 1615-1630.
  15. Nakagawasai T., Saji H., 2011. Method of registering a time sequence of aerial images and a digital map using a satellite image. IEEE Geoscience and Remote Sensing Society, Vancouver, 3358-3361.
  16. Sanroma G., Alquezar R., Serratos F., 2010. A Discrete Labelling Approach to Attributed Graph Matching Using SIFT Features. 20th International Conference on Pattern Recognition. 954-957.
  17. Schmid C., 1992. Appariement d'Images par Invariants Locaux de Niveaux de Gris. Doctoral Thesis, Institut National Polytechnique de Grenoble.
  18. Sungho, K., Yoon K. J., Kweon I. S. 2006, Object Recognition Using a Generalized Robust Invariant Feature and Gestalt's Law of roximity Similarity, Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06). 193.
  19. Szeliski R., 2006. Image Alignment and Stitching: A Tutorial, Handbook of Mathematical Models in Computer Vision, Springer, 273-292.
  20. Viola, P., Wells, W. M., 1997. Alignment by maximization of mutual information. International Journal of Computer Vision, 24 , 137-154.
  21. Vivet M., Martinez B., Binefa X., 2011. DLIG: Direct Local Indirect Global alignment for Video Mosaicing. IEEE Transactions on CSVT. 21(12): 1869-1878.
  22. Wei W., Jun H., and Yiping T., 2008. Image Matching for Geomorphic Measurement Based on SIFT and RANSAC Methods. in Proc. CSSE (2).317-320.
  23. Wyawahare, M. V., Patil, P. M., Abhyankar, H. K., 2009. Image Registration Techniques: An overview. International Journal of Signal Processing, Image Processing and Pattern Recognition, 2, 1-5.
  24. Xiong, Z. and Zhang, Y., 2009a. Image registration,In: Encyclopedia of Geography. Sage Publication.
  25. Xiong, Z. and Zhang Y., 2010. A critical review of image registration methods, International Journal of Image and Data Fusion, 1:2, 137-158.
  26. Zitova, B. Flusser, J., 2003. Image registration methods: a survey. Image and Vision Computing, 21, 977-1000.
Download


Paper Citation


in Harvard Style

Hadj Mtir I., Kaâniche K., Vasseur P. and Chtourou M. (2012). False Positive Outliers Rejection for Improving Image Registration Accuracy - Application to Road Traffic Aerial Sequences . In Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-8565-22-8, pages 274-279. DOI: 10.5220/0004038102740279


in Bibtex Style

@conference{icinco12,
author={Ines Hadj Mtir and Khaled Kaâniche and Pascal Vasseur and Mohamed Chtourou},
title={False Positive Outliers Rejection for Improving Image Registration Accuracy - Application to Road Traffic Aerial Sequences},
booktitle={Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2012},
pages={274-279},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004038102740279},
isbn={978-989-8565-22-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - False Positive Outliers Rejection for Improving Image Registration Accuracy - Application to Road Traffic Aerial Sequences
SN - 978-989-8565-22-8
AU - Hadj Mtir I.
AU - Kaâniche K.
AU - Vasseur P.
AU - Chtourou M.
PY - 2012
SP - 274
EP - 279
DO - 10.5220/0004038102740279