Applying Hyperbolic Wavelets in Frequency Domain Identification

Alexandros Soumelidis, Ferenc Schipp, József Bokor, Ferenc Schipp, József Bokor

Abstract

The paper elaborates a hyperbolic wavelet construction for representing signals in the Hardy space H2 on the unit disc. An efficient computing scheme based on the matrix form of the representation is worked out. The wavelet coefficients can be computed on the basis of discrete time–domain measurements. This wavelet is used to reconstruct poles of functions in H2 as the basis of nonparametric frequency–domain identification of discrete–time signals and systems.

References

  1. Ahlfors, L. (1973). Conformal invariants. McGraw-Hill, New York.
  2. Bokor, J., Ninness, B., e Silva, T. O., Van den Hof, P. M. J., and Wahlberg, B. (1999). Selection of poles in GOBF models. In Modelling and Identification with Orthogonal Basis Functions, Workshop notes of a preconference tutorial presented at the 14th IFAC World Congress, Beijing, China. Chapter 5.
  3. Daubechies, I. (1992). Ten lectures on wavelets. CBMS/NSF Series in Applied Mathematics; 61. SIAM, Philadelphia, Pennsylvania.
  4. e Silva, T. O. (2005). Pole selection in GOBF models. In Heuberger, P. S. C., Van den Hof, P. M. J., and Wahlberg, B., editors, Modelling and Identification with Rational Orthogonal Basis Functions, chapter 11, pages 297-336. Springer Verlag.
  5. Goupillaud, P., Grossmann, A., and Morlet, J. (1984). Cycle-octave and related transforms in seismic signal analysis. Geoexploration, 25:85-102.
  6. Heuberger, P. S. C., Van den Hof, P. M. J., and Wahlberg, B. (2005). Modelling and Identification with Rational Orthogonal Basis Functions. Springer Verlag, New York.
  7. Meyer, Y. (1990). Ondolettes et Operateurs. Hermann, New York.
  8. Pap, M. and Schipp, F. (2006). The voice transform on the Blaschke group I. Pure Mathematics and Applications, 17(3-4):387-395.
  9. Schipp, F. and Soumelidis, A. (2011). On the Fourier coefficients with respect to the discrete Laguerre system. Annales Univ. Sci. Budapest, Sect. Comput., 34:223- 233.
  10. Soumelidis, A., Pap, M., Schipp, F., and Bokor, J. (2002a). Frequency domain identification of partial fraction models. In Proceedings of the15th IFAC World Congress, page on CD, Barcelona, Spain.
  11. Soumelidis, A., Schipp, F., and Bokor, J. (2002b). Frequency domain representation of signals in rational orthogonal bases. In Proc. of the 10th Mediterranean Conference on Control and Automation, page on CD, Lisboa, Portugal. MED'2002.
  12. WawrzyÁczyk, A. (1984). Group Representations and Special Functions. Mathematics and Its Applications. D. Reidel Publishing Comapany, Dordrecht, Boston, Landcaster.
Download


Paper Citation


in Harvard Style

Soumelidis A., Schipp F., Bokor J., Bokor J. and Schipp F. (2012). Applying Hyperbolic Wavelets in Frequency Domain Identification . In Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-8565-21-1, pages 532-535. DOI: 10.5220/0004043705320535


in Bibtex Style

@conference{icinco12,
author={Alexandros Soumelidis and Ferenc Schipp and József Bokor and József Bokor and Ferenc Schipp},
title={Applying Hyperbolic Wavelets in Frequency Domain Identification},
booktitle={Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2012},
pages={532-535},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004043705320535},
isbn={978-989-8565-21-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - Applying Hyperbolic Wavelets in Frequency Domain Identification
SN - 978-989-8565-21-1
AU - Soumelidis A.
AU - Schipp F.
AU - Bokor J.
AU - Bokor J.
AU - Schipp F.
PY - 2012
SP - 532
EP - 535
DO - 10.5220/0004043705320535