Toward a Product Search Engine based on User Reviews

Paolo Fosci, Giuseppe Psaila

Abstract

We address the problem of developing a method for retrieving products exploiting product user-reviews that can be found on the internet. For this purpose, we introduce a ranking model based on the concept of itemset mining of frequent terms. The prototype search engine that implements the proposed retrieval model is illustrated, and a preliminary evaluation on a real data set is discussed.

References

  1. Agrawal, R., Imielinski, T., and Swami, A. (1993). Database mining: A performance perspective. IEEE Transactions on Knowledge and Data Engineering, 5(6):914-925.
  2. Agrawal, R. and Srikant, R. (1994). Fast algorithms for mining association rules in large databases. In Proceedings of the 20th VLDB Conference, Santiago, Chile.
  3. Chaovalit, P. and Zhou, L. (2005). Movie review mining: a comparison between supervised and unsupervised classification approaches. In HICSS. IEEE Computer Society.
  4. Dave, K., Lawrence, S., and Pennock, D. M. (2003). Mining the peanut gallery: opinion extraction and semantic classification of product reviews. In WWW, pages 519-528.
  5. Hu, M. and Liu, B. (2004a). Mining and summarizing customer reviews. In Kim, W., Kohavi, R., Gehrke, J., and DuMouchel, W., editors, KDD, pages 168-177. ACM.
  6. Hu, M. and Liu, B. (2004b). Mining opinion features in customer reviews. In McGuinness, D. L. and Ferguson, G., editors, AAAI, pages 755-760. AAAI Press / The MIT Press.
  7. Kim, W., Ryu, J., Kim, K. I., and Kim, U.-M. (2009). A method for opinion mining of product reviews using association rules. In Sohn, S., Chen, L., Hwang, S., Cho, K., Kawata, S., Um, K., Ko, F. I. S., Kwack, K.- D., Lee, J. H., Kou, G., Nakamura, K., Fong, A. C. M., and Ma, P. C. M., editors, Int. Conf. Interaction Sciences, volume 403 of ACM International Conference Proceeding Series, pages 270-274. ACM.
  8. Lee, D., Jeong, O.-R., and goo Lee, S. (2008). Opinion mining of customer feedback data on the web. In Kim, W. and Choi, H.-J., editors, ICUIMC, pages 230-235. ACM.
  9. Liu, B., Hu, M., and Cheng, J. (2005). Opinion observer: analyzing and comparing opinions on the web. In Ellis, A. and Hagino, T., editors, WWW, pages 342-351. ACM.
  10. Liu, D. T. and Xu, X. W. (2001). A review of web-based product data manageement systems. 44(1):251-262.
  11. Ly, D. K., Sugiyama, K., Lin, Z., and Kan, M.-Y. (2011). Product review summarization based on facet identification and sentence clustering. CoRR, abs/1110.1428.
  12. Sandvig, J. J., Mobasher, B., and Burke, R. D. (2007). Robustness of collaborative recommendation based on association rule mining. In Konstan, J. A., Riedl, J., and Smyth, B., editors, RecSys, pages 105-112. ACM.
  13. Zhuang, L., Jing, F., and Zhu, X. (2006). Movie review mining and summarization. In Yu, P. S., Tsotras, V. J., Fox, E. A., and Liu, B., editors, CIKM, pages 43-50. ACM.
Download


Paper Citation


in Harvard Style

Fosci P. and Psaila G. (2012). Toward a Product Search Engine based on User Reviews . In Proceedings of the International Conference on Data Technologies and Applications - Volume 1: DATA, ISBN 978-989-8565-18-1, pages 223-228. DOI: 10.5220/0004051602230228


in Bibtex Style

@conference{data12,
author={Paolo Fosci and Giuseppe Psaila},
title={Toward a Product Search Engine based on User Reviews},
booktitle={Proceedings of the International Conference on Data Technologies and Applications - Volume 1: DATA,},
year={2012},
pages={223-228},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004051602230228},
isbn={978-989-8565-18-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Data Technologies and Applications - Volume 1: DATA,
TI - Toward a Product Search Engine based on User Reviews
SN - 978-989-8565-18-1
AU - Fosci P.
AU - Psaila G.
PY - 2012
SP - 223
EP - 228
DO - 10.5220/0004051602230228