# Illustrating the Difficulties of Zimmermann Method for Solving the Fuzzy Linear Programming by the Geometric Approach

### M. R. Safi, A. Razmjoo

#### Abstract

In this paper we first recall Zimmermann method and the Geometric approach for solving fuzzy linear programming problem. We show, by the geometric approach, Zimmerman method has some difficulties. Numerical examples are provided for illustrating the difficulties. Finally, the IZM algorithm for improving Zimmermann method is recalled.

#### References

- Bellman, R. E. and Zadeh L. A., 1970.Decision Making in a Fuzzy Environment, Management Science 17, 141- 164.
- Chanas, S., 1983. The use of Parametric Programming in Fuzzy Linear Programming, Fuzzy Sets and Systems, 11, 243-251.
- Guu, S. M. and Wu, Y. K., 1999. Two Phase Approach for Solving the Fuzzy Linear Programming Problems, Fuzzy Sets and Systems, 107, 191-195.
- Rosenfeld, A., 1994. Fuzzy plane geometry: triangles,Pattern Recognition Letters, 15, 1261-1264.
- Safi M. R., Maleki, H. R. and Zaeimazad, E., 2007.A Note on Zimmermann Method for Solving Fuzzy Linear Programming Problem,Iranian Journal of Fuzzy Systems, vol. 4, no. 2, 31-45
- Safi M. R., Maleki, H. R. and Zaeimazad, E., 2007.A Geometric Approach for Solving Fuzzy Linear Programming Problems,Fuzzy Optimization and Decision Making, 6, 315-336.
- Tanaka H., Okuda, T.and Asai, K., 1974. On fuzzy mathematical Programming, Journal of cybernetics 3(4), 37-46.
- Verdegay, J. L., 1982. Fuzzy Mathematical Programming, in: M.M. Gupta and E. Sanchez, Eds., Fuzzy Information and Decision Processes, North-Holland, Amsterdam, 231-236.
- Zimmermann, H. J., 1976. Description and Optimization of Fuzzy Systems,International Journal of General Systems, 2, 209- 215.

#### Paper Citation

#### in Harvard Style

R. Safi M. and Razmjoo A. (2012). **Illustrating the Difficulties of Zimmermann Method for Solving the Fuzzy Linear Programming by the Geometric Approach** . In *Proceedings of the 4th International Joint Conference on Computational Intelligence - Volume 1: FCTA, (IJCCI 2012)* ISBN 978-989-8565-33-4, pages 435-438. DOI: 10.5220/0004114604350438

#### in Bibtex Style

@conference{fcta12,

author={M. R. Safi and A. Razmjoo},

title={Illustrating the Difficulties of Zimmermann Method for Solving the Fuzzy Linear Programming by the Geometric Approach},

booktitle={Proceedings of the 4th International Joint Conference on Computational Intelligence - Volume 1: FCTA, (IJCCI 2012)},

year={2012},

pages={435-438},

publisher={SciTePress},

organization={INSTICC},

doi={10.5220/0004114604350438},

isbn={978-989-8565-33-4},

}

#### in EndNote Style

TY - CONF

JO - Proceedings of the 4th International Joint Conference on Computational Intelligence - Volume 1: FCTA, (IJCCI 2012)

TI - Illustrating the Difficulties of Zimmermann Method for Solving the Fuzzy Linear Programming by the Geometric Approach

SN - 978-989-8565-33-4

AU - R. Safi M.

AU - Razmjoo A.

PY - 2012

SP - 435

EP - 438

DO - 10.5220/0004114604350438