Adaptation of the User Navigation Scheme using Clustering and Frequent Pattern Mining Techiques for Profiling

Olatz Arbelaitz, Ibai Gurrutxaga, Aizea Lojo, Javier Muguerza, Jesús M. Pérez, Iñigo Perona

Abstract

There is a need to facilitate access to the required information in the web and adapting it to the users’ preferences and requirements. This paper presents a system that, based on a collaborative filtering approach, adapts the web site to improve the browsing experience of the user: it generates automatically interesting links for new users. The system only uses the web log files stored in any web server (common log format) and builds user profiles from them combining machine learning techniques with a generalization process for data representation. These profiles are later used in an exploitation stage to automatically propose links to new users. The paper examines the effect of the parameters of the system on its final performance. Experiments show that the designed system performs efficiently in a database accessible from the web and that the use of a generalization process, specificity in profiles and the use of frequent pattern mining techniques benefit the profile generation phase, and, moreover, diversity seems to help in the exploitation phase.

References

  1. Arlitt, M. and Williamson, C. (1995). Http requests to the nasa kennedy space center www server. NASA-HTTP Brusilovsky, P., Kobsa, A., and Nejdl, W., editors (2007). The Adaptive Web: Methods and Strategies of Web Personalization, volume 4321 of Lecture Notes in Computer Science. Springer, Berlin.
  2. Chordia, B. S. and Adhiya, K. P. (2011). Grouping web access sequences using sequence alignment method. Indian Journal of Computer Science and Engineering (IJCSE), 2(3):308-314.
  3. Cooley, R., Mobasher, B., and Srivastava, J. (1999). Data preparation for mining world wide web browsing patterns. Knowledge and Information System, 1:5-32.
  4. Danzig, P., Mogul, J., Paxson, V., and Schwartz, M. (2008). The internet traffic archive.
  5. Dasarathy, S. (1991). Nearest neighbor norms: NN pattern classification techniques. IEEE Computer Society Press.
  6. García, E., Romero, C., Ventura, S., and Castro, C. D. (2009). An architecture for making recommendations to courseware authors using association rule mining and collaborative filtering. User Modeling and UserAdapted Interaction, 19(1-2):99-132.
  7. Gusfield, D. (1997). Algorithms on strings, trees, and sequences: computer science and computational biology. Cambridge University Press, New York.
  8. Kaufman, L. and Rousseeuw, P. (1990). Finding Groups in Data An Introduction to Cluster Analysis. Wiley Interscience, New York.
  9. Liu, B. (2007). Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data. Data-Centric Systems and Applications. Springer.
  10. Mobasher, B. (2007). Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data, chapter Web Usage Mining.
  11. Pierrakos, D., Paliouras, G., Papatheodorou, C., and Spyropoulos, C. D. (2003). Web usage mining as a tool for personalization: A survey. User Modeling and UserAdapted Interaction, 13(4):311-372.
  12. Schiaffino, S. N. and Amandi, A. (2009). Intelligent user profiling. 5640:193-216.
  13. Srivastava, T., Desikan, P., and Kumar, V. (2005). Web mining - concepts, applications and research directions. pages 275-307.
  14. W3C (1995). The world wide web consortium: The common log format.
  15. Wilson, J. (2010). Website of national aeronautics and space administration.
  16. Zaki, J. M. (2001). Spade: An efficient algorithm for mining frequent sequences. Mach. Learn., 42(1-2):31-60.
Download


Paper Citation


in Harvard Style

Arbelaitz O., Gurrutxaga I., Lojo A., Muguerza J., M. Pérez J. and Perona I. (2012). Adaptation of the User Navigation Scheme using Clustering and Frequent Pattern Mining Techiques for Profiling . In Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2012) ISBN 978-989-8565-29-7, pages 187-192. DOI: 10.5220/0004130801870192


in Bibtex Style

@conference{kdir12,
author={Olatz Arbelaitz and Ibai Gurrutxaga and Aizea Lojo and Javier Muguerza and Jesús M. Pérez and Iñigo Perona},
title={Adaptation of the User Navigation Scheme using Clustering and Frequent Pattern Mining Techiques for Profiling},
booktitle={Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2012)},
year={2012},
pages={187-192},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004130801870192},
isbn={978-989-8565-29-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2012)
TI - Adaptation of the User Navigation Scheme using Clustering and Frequent Pattern Mining Techiques for Profiling
SN - 978-989-8565-29-7
AU - Arbelaitz O.
AU - Gurrutxaga I.
AU - Lojo A.
AU - Muguerza J.
AU - M. Pérez J.
AU - Perona I.
PY - 2012
SP - 187
EP - 192
DO - 10.5220/0004130801870192