Are Related Links Effective for Contextual Advertising? - A Preliminary Study

Giuliano Armano, Alessandro Giuliani, Eloisa Vargiu

Abstract

Classical contextual advertising systems suggest suitable ads to a given webpage just analyzing its content, without relying on further information. We claim that adding some information extracted by semantically related pages can improve the overall performances. To this end, this paper proposes an experimental study aimed at verifying to which extent the analysis of related links, i.e., inlinks and outlinks, can help contextual advertising. Experiments have been performed on about 15000 webpages extracted by DMoz. Results show that the adoption of related links significantly improves the performance of the adopted baseline system.

References

  1. Anagnostopoulos, A., Broder, A. Z., Gabrilovich, E., Josifovski, V., and Riedel, L. (2007). Just-in-time contextual advertising. In CIKM 7807: Proceedings of the sixteenth ACM conference on Conference on information and knowledge management, pages 331-340, New York, NY, USA. ACM.
  2. Armano, G., Giuliani, A., and Vargiu, E. (2011). Studying the impact of text summarization on contextual advertising. In 8th International Workshop on Text-based Information Retrieval.
  3. Armano, G. and Vargiu, E. (2010). A unifying view of contextual advertising and recommender systems. In Proceedings of International Conference on Knowledge Discovery and Information Retrieval (KDIR 2010), pages 463-466.
  4. Brin, S. and Page, L. (1998). The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst., 30:107-117.
  5. Broder, A., Fontoura, M., Josifovski, V., and Riedel, L. (2007). A semantic approach to contextual advertising. In SIGIR 7807: Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval, pages 559-566, New York, NY, USA. ACM.
  6. Budanitsky, A. and Hirst, G. (2006). Evaluating wordnetbased measures of lexical semantic relatedness. Comput. Linguist., 32:13-47.
  7. Chakrabarti, S., van den Berg, M., and Dom, B. (1999). Focused crawling: a new approach to topic-specific Web resource discovery. Computer Networks (Amsterdam, Netherlands: 1999), 31(11-16):1623-1640.
  8. Chapelle, O., Metlzer, D., Zhang, Y., and Grinspan, P. (2009). Expected reciprocal rank for graded relevance. In Proceedings of the 18th ACM conference on Information and knowledge management, CIKM 7809, pages 621-630, New York, NY, USA. ACM.
  9. Ciaramita, M., Murdock, V., and Plachouras, V. (2008). Online learning from click data for sponsored search. In Proceeding of the 17th international conference on World Wide Web, WWW 7808, pages 227-236, New York, NY, USA. ACM.
  10. Cohen, P. R. and Kjeldsen, R. (1987). Information retrieval by constrained spreading activation in semantic networks. Information Processing and Management, 23(4):255-268.
  11. Frei, H. P. and Stieger, D. (1995). The use of semantic links in hypertext information retrieval. Inf. Process. Manage., 31:1-13.
  12. Järvelin, K. and Kekäläinen, J. (2000). Ir evaluation methods for retrieving highly relevant documents. In Proceedings of the 23rd annual international ACM SIGIR conference on Research and development in information retrieval, SIGIR 7800, pages 41-48, New York, NY, USA. ACM.
  13. Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment. Journal of ACM, 46:604-632.
  14. Koolen, M. and Kamps, J. (2011). Are semantically related links more effective for retrieval? In Proceedings of the 33rd European conference on Advances in information retrieval, ECIR'11, pages 92-103, Berlin, Heidelberg. Springer-Verlag.
  15. Lempel, R. and Moran, S. (2001). SALSA: the stochastic approach for link-structure analysis. ACM Transactions on Information Systems, 19:131-160.
  16. Marchiori, M. (1997). The quest for correct information on the web: hyper search engines. Comput. Netw. ISDN Syst., 29:1225-1235.
  17. Murdock, V., Ciaramita, M., and Plachouras, V. (2007). A noisy-channel approach to contextual advertising.
  18. Picard, J. and Savoy, J. (2003). Enhancing retrieval with hyperlinks: a general model based on propositional argumentation systems. J. Am. Soc. Inf. Sci. Technol., 54:347-355.
  19. Porter, M. (1980). An algorithm for suffix stripping. Program, 14(3):130-137.
  20. Ribeiro-Neto, B., Cristo, M., Golgher, P. B., and Silva de Moura, E. (2005). Impedance coupling in contenttargeted advertising. In SIGIR 7805: Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval, pages 496-503, New York, NY, USA. ACM.
  21. Rocchio, J. (1971). The SMART Retrieval System: Experiments in Automatic Document Processing, chapter Relevance feedback in information retrieval, pages 313-323. PrenticeHall.
  22. Salton, G. and McGill, M. (1984). Introduction to Modern Information Retrieval. McGraw-Hill Book Company.
  23. Shakery, A. and Zhai, C. X. (2006). A probabilistic relevance propagation model for hypertext retrieval. In Proceedings of the 15th ACM international conference on Information and knowledge management, CIKM 7806, pages 550-558, New York, NY, USA. ACM.
  24. Yih, W.-t., Goodman, J., and Carvalho, V. R. (2006). Finding advertising keywords on web pages. In WWW 7806: Proceedings of the 15th international conference on World Wide Web, pages 213-222, New York, NY, USA. ACM.
Download


Paper Citation


in Harvard Style

Armano G., Giuliani A. and Vargiu E. (2012). Are Related Links Effective for Contextual Advertising? - A Preliminary Study . In Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2012) ISBN 978-989-8565-29-7, pages 221-226. DOI: 10.5220/0004135802210226


in Bibtex Style

@conference{kdir12,
author={Giuliano Armano and Alessandro Giuliani and Eloisa Vargiu},
title={Are Related Links Effective for Contextual Advertising? - A Preliminary Study},
booktitle={Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2012)},
year={2012},
pages={221-226},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004135802210226},
isbn={978-989-8565-29-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2012)
TI - Are Related Links Effective for Contextual Advertising? - A Preliminary Study
SN - 978-989-8565-29-7
AU - Armano G.
AU - Giuliani A.
AU - Vargiu E.
PY - 2012
SP - 221
EP - 226
DO - 10.5220/0004135802210226