Enhancing a Web Usage Mining based Tourism Website Adaptation with Content Information

Olatz Arbelaitz, Ibai Gurrutxaga, Aizea Lojo, Javier Muguerza, Jesús M. Pérez, Iñigo Perona

Abstract

Websites are important tools for tourism destinations. The adaptation of the websites to the users’ preferences and requirements will turn the websites into more effective tools. Using machine learning techniques to build user profiles allows us to take into account their real preferences. This paper presents the first approach of a system that, based on a collaborative filtering approach, adapts a tourism website to improve the browsing experience of the users: it generates automatically interesting links for new users. In this work we first build a system based just on the usage information stored in web log files (common log format) and then combine it with the web content information to improve the performance of the system. The use of content information not only improves the results but it also offers very useful information about the users’ interests to travel agents.

References

  1. Abou-Shouk, M., Lim, W. M., and Megicks, P. (2012). Internet adoption by travel agents: a case of egypt. International Journal of Tourism Research, pages n/a-n/a.
  2. Aha, D. W., Breslow, L., and Mun˜oz-Avila, H. (2001). Conversational case-based reasoning. Appl. Intell., 14(1):9-32.
  3. Boldi, P. and Vigna, S. (2006). Mg4j at trec 2006. In Voorhees, E. M. and Buckland, L. P., editors, TREC, volume Special Publication 500-272. National Institute of Standards and Technology (NIST).
  4. Chordia, B. S. and Adhiya, K. P. (2011). Grouping web access sequences using sequence alignment method. Indian Journal of Computer Science and Engineering (IJCSE), 2(3):308-314.
  5. Cooley, R., Mobasher, B., and Srivastava, J. (1999). Data preparation for mining world wide web browsing patterns. Knowledge and Information System, 1:5-32.
  6. Dasarathy, S. (1991). Nearest neighbor (NN) norms : NN pattern classification techniques. IEEE Computer Society Press.
  7. GNU (1996). Gnu wget.
  8. Gretzel, U. (2011). Intelligent systems in tourism: A social science perspective. Annals of Tourism Research, 38(3):757-779.
  9. Gusfield, D. (1997). Algorithms on strings, trees, and sequences: computer science and computational biology. Cambridge University Press, New York, NY, USA.
  10. He, D. and Göker, A. (2000). Detecting session boundaries from web user logs. Proceedings of the 22nd Annual Colloquium on Information Retrieval Research.
  11. Kaufman, L. and Rousseeuw, P. (1990). Finding Groups in Data An Introduction to Cluster Analysis. Wiley Interscience, New York.
  12. Madylova, A. and gduc, S. G. (2009). A taxonomy based semantic similarity of documents using the cosine measure. In ISCIS, pages 129-134. IEEE.
  13. Mobasher, B. (2006). 12 web usage mining. Encyclopedia of Data Warehousing and Data Mining Idea Group Publishing, pages 449-483.
  14. Pierrakos, D., Paliouras, G., Papatheodorou, C., and Spyropoulos, C. D. (2003). Web usage mining as a tool for personalization: A survey. User Modeling and UserAdapted Interaction, 13(4):311-372.
  15. Schiaffino, S. and Amandi, A. (2009). Artificial intelligence. chapter Intelligent user profiling, pages 193- 216. Springer-Verlag, Berlin, Heidelberg.
  16. Srivastava, T., Desikan, P., and Kumar, V. (2005). Web mining - concepts, applications and research directions. pages 275-307.
  17. W3C (1995). The world wide web consortium: The common log format.
  18. Yahoo! (June 15 2011). Term extraction documentation for yahoo! search.
  19. Zaki, J. M. (2001). Spade: An efficient algorithm for mining frequent sequences. Mach. Learn., 42(1-2):31-60.
Download


Paper Citation


in Harvard Style

Arbelaitz O., Gurrutxaga I., Lojo A., Muguerza J., M. Pérez J. and Perona I. (2012). Enhancing a Web Usage Mining based Tourism Website Adaptation with Content Information . In Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2012) ISBN 978-989-8565-29-7, pages 287-292. DOI: 10.5220/0004171002870292


in Bibtex Style

@conference{kdir12,
author={Olatz Arbelaitz and Ibai Gurrutxaga and Aizea Lojo and Javier Muguerza and Jesús M. Pérez and Iñigo Perona},
title={Enhancing a Web Usage Mining based Tourism Website Adaptation with Content Information},
booktitle={Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2012)},
year={2012},
pages={287-292},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004171002870292},
isbn={978-989-8565-29-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2012)
TI - Enhancing a Web Usage Mining based Tourism Website Adaptation with Content Information
SN - 978-989-8565-29-7
AU - Arbelaitz O.
AU - Gurrutxaga I.
AU - Lojo A.
AU - Muguerza J.
AU - M. Pérez J.
AU - Perona I.
PY - 2012
SP - 287
EP - 292
DO - 10.5220/0004171002870292