Datalog for Inconsistency-tolerant Knowledge Engineering

Hendrik Decker

Abstract

Inconsistency tolerance is widely discussed and accepted in the scientific community of knowledge engineering. From a principled, theoretical point of view, however, the fundamental conflict of sound reasoning with unsound data has remained largely unresolved. The vast majority of applications that need inconsistency tolerance either does not care about a firm theoretical underpinning, or recurs on non-standard logics, or superficially refers to well-established classical foundations. We argue that hardly any of these paradigms will survive in the long run. We defend the position that datalog (Abiteboul et al., 1995), including integrity constraints, is a viable candidate for a sound and robust foundation of inconsistency-tolerant knowledge engineering. We line our argument by a propaedeutic glance at the history of issues related to inconsistency.

References

  1. Abiteboul, S., Hull, R., and Vianu, V. (1995). Foundations of Databases. Addison-Wesley.
  2. Bagni, G. (2008). Obeying a rule: Ludwig Wittgenstein and the foundations of set theory. The Montana Mathematics Enthusiast, 5(2,3):215-222.
  3. Bertossi, L., Hunter, A., and Schaub, T. (2005). Inconsistency Tolerance, volume 3300 of LNCS. Springer.
  4. Bonchi, F., Giannotti, F., Mainetto, G., and Pedreschi, D. (1999). Using data mining techniques in fiscal fraud detection. In Proc. 1st DaWaK, volume 1676 of LNCS, pages 369-376. Springer.
  5. Bowen, K. and Kowalski, R. A. (1982). Amalgamating language and metalanguage. In Clark, K. and Tärnlund, S.-A., editors, Logic Programming, pages 153-172. Academic Press.
  6. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., and Rosati, R. (2008). Inconsistency tolerance in P2P data integration: an epistemic logic approach. Information Systems, 33(4-5):360-384.
  7. Calvanese, D., Kharlamov, E., Montali, M., and Zheleznyakov, D. (2012). Inconsistency tolerance in OWL 2 QL knowledge and action bases. In Klinov, P. and Horridge, M., editors, Proc. OWL Experiences and Directions Workshop, volume 849. CEUR Electronic Workshop Proceedings. Available at "http://ceur-ws.org/Vol-849/.
  8. Caruana, L. (2004). Wittgenstein and the status of contradictions. In A. Coliva, E. P., editor, Wittgenstein Today, pages 223-232. Il Poligrafo, Padova.
  9. Chihara, C. (1977). Wittgenstein's analysis of the paradoxes in his lectures on the foundations of mathematics. Philosophical Review, 86(3):365-381.
  10. Chopra, S. and Parikh, R. (1999). An inconsistency tolerant model for belief representation and belief revision. In Proc. IJCAI, pages 192-197. Morgan Kaufmann.
  11. Cuzzocrea, A., de Juan-Marín, R., Decker, H., and Mun˜ozEscoí, F. D. (2012). Managing uncertainty in databases and scaling it up to concurrent transactions. To appear in Springer LNCS.
  12. Decker, H. (2010). How to contain inconsistency or, why Wittgenstein only scratched the surface. In Proc. 7th European Conf. on Computing and Philosophy, pages 70-75. Dr. Hut.
  13. Decker, H. (2011a). Answers that have integrity. In Schewe, K.-D. and Thalheim, B., editors, Semantics in Data and Knowledge Bases - 4th International Workshop SDKB, volume 6834 of LNCS, pages 54-72. Springer.
  14. Decker, H. (2011b). Causes for inconsistency-tolerant schema update management. In Proc. 27th IDCE Workshops, pages 157-161. IEEE CSP.
  15. Decker, H. (2012). Measure-based inconsistency-tolerant maintenance of database integrity. To appear in Springer LNCS.
  16. Decker, H. and Martinenghi, D. (2011). Inconsistencytolerant integrity checking. Transactions on Knowledge and Data Engineering, 23(2):218-234.
  17. Decker, H. and Mun˜oz-Escoí, F. D. (2010). Revisiting and improving a result on integrity preservation by concurrent transactions. In Proc. OTM Workshops, volume 6428 of LNCS, pages 297-306. Springer.
  18. Diamond, C. (1976). Wittgenstein's Lectures on the Foundations of Mathematics, Cambridge, 1939. Harvester, Hassocks.
  19. Dung, P. M. (1995). An argumentation-theoretic foundations for logic programming. J. Logic Programming, 22(2):151-171.
  20. Dunnei, P., Hunter, A., McBurney, P., Parsons, S., and Wooldridge, M. (2009). Inconsistency tolerance in weighted argument systems. In Proc. 8th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2009), volume 2, pages 851-858. International Foundation for Autonomous Agents and Multiagent Systems.
  21. Gupta, A., Sagiv, Y., Ullman, J. D., and Widom, J. (1994). Constraint checking with partial information. In Proceedings of PODS 1994, pages 45-55. ACM Press.
  22. Hewitt, C. (2012). Formalizing common sense for scalable inconsistency-robust information integration using direct logic reasoning and the actor model. http://arxiv.org/pdf/0812.4852v85.
  23. Hinrichs, T., Kao, J., and Genesereth, M. (2009). Inconsistency-tolerant reasoning with classical logic and large databases. In Proc. 8th SARA, pages 105- 112. AAAI Press.
  24. Imam, F. and MacCaull, W. (2009). Integrating healthcare ontologies: Inconsistency tolerance and case study. In D. Ardagna, M. M. and Yang, J., editors, Business Process Management Workshops (BPM 2008), volume 17 of Lecture Notes in Business Information Processing, pages 373-384. Springer.
  25. Koogan Breitman, K., Felicssimo, C. H., and Cysneiros, L. M. (2003). Semantic interoperability by aligning ontologies. In Galvo Martins, L. E. and Franch, X., editors, Workshop em Engenharia de Requisitos (WER03), pages 213-222.
  26. Kowalski, R. (1988). Logic-based open systems. In Hoepelman, J., editor, Representation and Reasoning, pages 125-134, T übingen. Max Niemeyer Verlag.
  27. Kowalski, R. A. (1979). Logic for Problem Solving. Elsevier.
  28. Müller, H., Leser, U., and Freytag, J.-C. (200). Mining for patterns in contradictory data. In Proc. 1st IQIS, pages 51-58. ACM SIGMOD.
  29. Nuseibeh, B., Easterbrook, S., and Russo, A. (2000). Leverage inconsistency in software development. Computer, 33(4):24-29.
  30. Padmanabhan, B. and Tuzhilin, A. (2002). Knowledge refinement based on the discovery of unexpected patterns in data mining. Decision Support Systems, 33(3):309-321.
  31. Qi, G., Haase, P., Schenk, S., Stadtmüller, S., and Hitzler, P. (2009). Inconsistency-tolerant reasoning with networked ontologies. Technical report, NeOn Deliverable D1.2.4.
  32. Wright, C. (1980). Wittgenstein on the Foundations of Mathematics. Duckworth, London.
  33. Wrigley, M. (1980). Wittgenstein on inconsistency. Philosophy, 55(214):471-484.
  34. Yu, F., Qin, Z., and Jia, X.-L. (2003). Data mining application issues in fraudulent tax declaration detection. In Proc. 2nd Conf. Machine Learning and Cybernetics, pages 2202-2206. IEEE.
Download


Paper Citation


in Harvard Style

Decker H. (2012). Datalog for Inconsistency-tolerant Knowledge Engineering . In Proceedings of the International Conference on Knowledge Engineering and Ontology Development - Volume 1: KEOD, (IC3K 2012) ISBN 978-989-8565-30-3, pages 296-301. DOI: 10.5220/0004172202960301


in Bibtex Style

@conference{keod12,
author={Hendrik Decker},
title={Datalog for Inconsistency-tolerant Knowledge Engineering},
booktitle={Proceedings of the International Conference on Knowledge Engineering and Ontology Development - Volume 1: KEOD, (IC3K 2012)},
year={2012},
pages={296-301},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004172202960301},
isbn={978-989-8565-30-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Knowledge Engineering and Ontology Development - Volume 1: KEOD, (IC3K 2012)
TI - Datalog for Inconsistency-tolerant Knowledge Engineering
SN - 978-989-8565-30-3
AU - Decker H.
PY - 2012
SP - 296
EP - 301
DO - 10.5220/0004172202960301