Athlete Identification using Acceleration and Electrocardiographic Measurements Recorded with a Wireless Body Sensor

Peter Christ, Felix Werner, Ulrich Rückert, Jörg Mielebacher

Abstract

In this paper we propose a biometric method for identifying humans during walking and jogging. We use acceleration and electrocardiographic measurements recorded with a wireless body sensor attached to a chest strap. Our method does not require a particular acquisition setup. Information on the gait style and on the physiology is combined to identify a human despite severe motion related artefacts in the electrocardiograph and variations in the gait patterns. We propose to identify humans using features extracted in time and frequency domain and a standard classifier. With the collected data of 22 subjects on a treadmill at velocities from 3 to 9 km/h we obtained an accuracy of 98.1 %. The sensitivity of the identification ranged between 94.6 to 99.5% for the different subjects and the specificity was higher than 99.7 %.

References

  1. Afonso, V. X., Tompkins, W. J., Nguyen, T. Q., and Luo, S. (1999). ECG beat detection using filter banks. Transactions on Biomedical Engineering, 46(2):192-202.
  2. Ailisto, H. J., Lindholm, M., Mantyjarvi, J., Vildjiounaite, E., and Makela, S. M. (2005). Identifying people from gait pattern with accelerometers. In Society of Photo-Optical Instrumentation Engineers, volume 5779, pages 7-14.
  3. Bianchi, L., Angelini, D., and Lacquaniti, F. (1998). Individual characteristics of human walking mechanics. Pflügers Archiv European Journal of Physiology, 436:343-356.
  4. Biel, L., Pettersson, O., Philipson, L., and Wide, P. (2001). ECG analysis: a new approach in human identification. IEEE Transactions on Instrumentation and Measurement, 50(3):808-812.
  5. Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA.
  6. Breiman, L. (2001). Random forests. Machine Learning, 45(1):5-32.
  7. Chan, A. D. C., Hamdy, M. M., Badre, A., and Badee, V. (2008). Wavelet distance measure for person identification using electrocardiograms. IEEE Transactions on Instrumentation and Measurement, 57(2):248- 253.
  8. Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent System Technology, 2:27:1-27:27.
  9. Christ, P., Mielebacher, J., Haag, M., and R ückert, U. (2010). Detection of body movement and measurement of physiological stress with a mobile chest module in obesity prevention. In Proc. of the 10th Australasian Conf. on Mathematics and Computers in Sport, pages 67-74.
  10. Christ, P., Werner, F., Rückert, U., and Mielebacher, J. (2011). An approach for determining linear velocities of athletes from acceleration measurements using a neural network. In Proc. of the 6th IASTED Int. Conf. on Biomechanics, pages 105-112. ACTA Press.
  11. Conover, M. B. (2002). Understanding electrocardiography. Mosby.
  12. Gafurov, D., Helkala, K., and Søndrol, T. (2006). Biometric gait authentication using accelerometer sensor. Journal of Computers, 1(7):51-59.
  13. Green, L. S., Lux, R. L., Haws, C. W., Williams, R. R., Hunt, S. C., and Burgess, M. J. (1985). Effects of age, sex, and body habitus on QRS and ST-T potential maps of 1100 normal subjects. Circulation, 71(2):244-253.
  14. Han, J. and Kamber, M. (2006). Data mining: concepts and techniques. The Morgan Kaufmann series in data management systems. Elsevier.
  15. Hsu, C. W. and Lin, C. J. (2002). A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks, 13(2):415-425.
  16. Mäntyjärvi, J., Lindholm, M., Vildjiounaite, E., Mäkelä, S.- M., and Ailisto, H. A. (2005). Identifying users of portable devices from gait pattern with accelerometers. In IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, volume 2, pages ii/973-ii/976.
  17. Møller, M. F. (1993). A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks, 6(4):525-533.
  18. Nixon, M. S., Tan, T., and Chellappa, R. (2006). Human identification based on gait, volume 4. SpringerVerlag New York, Inc.
  19. Rong, L., Jianzhong, Z., Ming, L., and Xiangfeng, H. (2007). A wearable acceleration sensor system for gait recognition. In 2nd IEEE Conf. on Industrial Electronics and Applications, pages 2654-2659.
  20. Schölkopf, B., Smola, A. J., Williamson, R. C., and Bartlett, P. L. (2000). New support vector algorithms. Neural computation, 12(5):1207-1245.
  21. Shen, T. W., Tompkins, W. J., and Hu, Y. H. (2002). Onelead ECG for identity verification. In Proc. of the 2nd IEEE Int. Joint Conf. on Engineering in Medicine and Biology Society, volume 1, pages 62-63. IEEE.
  22. Simon, B. P. and Eswaran, C. (1997). An ECG classifier designed using modified decision based neural networks. Computers and Biomedical Research, 30(4):257-272.
  23. Vidaurre, C., Sander, T. H., and Schlögl, A. (2011). BioSig: The free and open source software library for biomedical signal processing. Computational Intelligence and Neuroscience, 2011:12.
  24. Weyand, P. G., Sternlight, D. B., Bellizzi, M. J., and Wright, S. (2000). Faster top running speeds are achieved with greater ground forces not more rapid leg movements. Journal of Applied Physiology, 89(5):1991-1999.
Download


Paper Citation


in Harvard Style

Christ P., Werner F., Rückert U. and Mielebacher J. (2013). Athlete Identification using Acceleration and Electrocardiographic Measurements Recorded with a Wireless Body Sensor . In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2013) ISBN 978-989-8565-36-5, pages 11-19. DOI: 10.5220/0004190300110019


in Bibtex Style

@conference{biosignals13,
author={Peter Christ and Felix Werner and Ulrich Rückert and Jörg Mielebacher},
title={Athlete Identification using Acceleration and Electrocardiographic Measurements Recorded with a Wireless Body Sensor},
booktitle={Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2013)},
year={2013},
pages={11-19},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004190300110019},
isbn={978-989-8565-36-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2013)
TI - Athlete Identification using Acceleration and Electrocardiographic Measurements Recorded with a Wireless Body Sensor
SN - 978-989-8565-36-5
AU - Christ P.
AU - Werner F.
AU - Rückert U.
AU - Mielebacher J.
PY - 2013
SP - 11
EP - 19
DO - 10.5220/0004190300110019