Influence of Pipette Geometry on the Displacement Profile of Isotropic Materials used for Vocal Fold Modeling

Sandra Weiß, Scott L. Thomson, Alexander Sutor, Stefan J. Rupitsch, Reinhard Lerch

2013

Abstract

Due to limited access to human vocal folds, synthetic vocal folds are used to study periodic phonation. With respect to a realistic replica, the properties of the synthetic material should be to those of as real tissue. Silicone rubber is a commonly used material for vocal fold models. A suitable method to analyze the material parameters of both artificial and real vocal folds is the pipette aspiration technique. In the present study, the displacement profiles of an isotropic silicone specimen were measured with three different pipette geometries. The experimental results were compared to finite element simulations of the setup based on frequency dependent material parameters extracted from a previous study. The results demonstrate the potential of the pipette aspiration technique for material characterization and validate the determination of material parameters by means of an Inverse Method. Furthermore, a possible parameter for the classification of anisotropic materials is proposed and the suitability of the different pipette geometries for material characterization is discussed.

References

  1. Alipour-Haghighi, F. and Titze, I. R. (1991). Elastic models of vocal fold tissues. Journal of the Acoustical Society of America, 90:1326-1331.
  2. Aoki, T., Ohashi, T., Matsumoto, T., and Sato, M. (1997). The pipette aspiration applied to the local stiffness measurement of soft tissues. Annals of Biomedical Engineering, 25:581-587.
  3. Becker, S., Kniesburges, S., and Müller, S. (2009). Flow-structure-acoustic interaction in a human voice model. Journal of the Acoustical Society of America, 125:1351-1361.
  4. Chan, R. W. and Titze, I. R. (1999). Viscoelastic shear properties of human vocal fold mucosa: measurement methodology and empirical results. Journal of the Acoustical Society of America, 106:2008-2021.
  5. Finck, C. and Dejeune, L. (2010). Handbook of Mammalian Vocalization, chapter Structure and oscillatory function of the vocal folds, pages 427-438. Elsevier.
  6. Gray, S. D. (2000). Cellular physiology of the vocal folds. Voice disorders and Phonosurgery I, 33:679-697.
  7. Hammond, T. H., Zhou, R., Hammond, E. H., Pawlak, A., and Gray, S. D. (1997). The intermediate layer: A morphologic study of the elastin and hyaluronic acid constituents of normal human vocal folds. Journal of Voice, 11(1):59-66.
  8. Henriksen, J. R. and Ipsen, J. H. (2004). Measurement of membrane elasticity by micro-pipette aspiration. The European Physical Journal E, 14:149-167.
  9. Hirano, M. (1981). Clinical examination of Voice. Springer.
  10. Ilg, J., Rupitsch, S. J., Sutor, A., and Lerch, R. (2012). Determination of dynamic material properties of silicone rubber using one-point measurements and finite element simulations. IEEE Transactions on Instrumentation and Measurement, 61:3031-3038.
  11. Kaltenbacher, M. (2007). Numerical Simulations of Mechatronic Sensors and Actuators. Springer.
  12. Matsumoto, T., Abe, H., Ohashi, T., Kato, Y., and Sato, M. (2002). Local elastic modulus of atherosclerotic lesions of rabbit thoracic aortas measured by pipette aspiration method. Physiological Measurement, 23:635-648.
  13. Ohashi, T., Abe, H., Matsumoto, T., and Sato, M. (2005). Pipette aspiration technique for the measurement of nonlinear and anisotropic mechanical properties of blood vessels under biaxial stretch. Journal of Biomechanics, 38:2248-2256.
  14. Pickup, B. A. and Thomson, S. L. (2009). Influence of asymmetric stiffness on the structural and aerodynamic response of synthetic vocal fold models. Journal of Biomechanics, 42:2219-2225.
  15. Rupitsch, S. J., Ilg, J., Sutor, A., Lerch, R., and D öllinger, M. (2011). Simulation based estimation of dynamic mechanical properties for viscoelastic materials used for vocal fold models. Journal of Sound and Vibration, 330:4447-4459.
  16. Rupitsch, S. J. and Lerch, R. (2009). Inverse method to estimate material parameters for piezoceramic disc actuators. Applied Physics A: Material Science & Proceedings, 97:735-740.
  17. Weiss, S., Thomson, S. L., Lerch, R., Döllinger, M., and Sutor, A. (2013). Pipette aspiration applied to the characterization of nonhomogeneous, transversely isotropic materials used for vocal fold modeling. Journal of the Mechanical Behavior of Biomedical Materials, doi: 10.1016/j.jmbbm.2012.08.005.
  18. Zörner, S., Kaltenbacher, M., Lerch, R., Sutor, A., and Döllinger, M. (2010). Measurement of the elasticity modulus of soft tissues. Journal of Biomechanics, 43:1540-1545.
Download


Paper Citation


in Harvard Style

Weiß S., L. Thomson S., Sutor A., J. Rupitsch S. and Lerch R. (2013). Influence of Pipette Geometry on the Displacement Profile of Isotropic Materials used for Vocal Fold Modeling . In Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2013) ISBN 978-989-8565-34-1, pages 108-113. DOI: 10.5220/0004191801080113


in Bibtex Style

@conference{biodevices13,
author={Sandra Weiß and Scott L. Thomson and Alexander Sutor and Stefan J. Rupitsch and Reinhard Lerch},
title={Influence of Pipette Geometry on the Displacement Profile of Isotropic Materials used for Vocal Fold Modeling},
booktitle={Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2013)},
year={2013},
pages={108-113},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004191801080113},
isbn={978-989-8565-34-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2013)
TI - Influence of Pipette Geometry on the Displacement Profile of Isotropic Materials used for Vocal Fold Modeling
SN - 978-989-8565-34-1
AU - Weiß S.
AU - L. Thomson S.
AU - Sutor A.
AU - J. Rupitsch S.
AU - Lerch R.
PY - 2013
SP - 108
EP - 113
DO - 10.5220/0004191801080113