Evolution of Bacterial Genome under Changing Mutational Pressure - Computer Simulation Studies

Paweł Błażej, Paweł Mackiewicz, Małgorzata Wańczyk, Stanisław Cebrat

Abstract

The main force shaping the structure of bacterial chromosomes is the replication-associated mutational pressure which is characterized by distinct nucleotide substitution patterns acting on differently replicated DNA strands (leading and lagging). Therefore, the composition of DNA strands is asymmetric and it is important at which strand a gene is located and into which strand it could be translocated. Thus, the mutational pressure restricts also intragenomic translocations. To analyze this effect, we have elaborated a simulation model of bacterial genome evolution assuming translocation of protein coding genes and different types of selection acting on their sequences. The ’negative’ selection eliminated individuals if the coding signal of any gene in its genome dropped below the acceptable range, whereas the ’stabilizing’ selection did not allow for the decrease in the coding signal of any gene below its original value. Under the ’negative’ selection more genes stayed or were translocated to the lagging strand, whereas under the ’stabilizing’ selection more genes preferred the leading strand. The ’stabilizing’ selection eliminated more individuals because of the coding signal loss and slightly fewer because of the stop codon generation. The ’stabilizing’ selection allowed also for much less gene translocations between strands than the ’negative’ selection.

References

  1. Achaz, G., Coissac, E., Netter, P., and Rocha, E. (2003). Associations between inverted repeats and the structural evolution of bacterial genomes. Genetics, 164:1279- 1289.
  2. Bellgard, M., Itoh, T., Watanabe, H., Imanishi, T., and Gojobori, T. (1999). Dynamic evolution of genomes and the concept of genome space. Ann. N. Y. Acad. Sci., 870:293-300.
  3. Blaz?ej, P., Mackiewicz, P., and Cebrat, S. (2010). Using the genetic code wisdom for recognizing protein coding sequences. In Proceedings of the 2010 International Conference on Bioinformatics & Computational Biology (BIOCOMP 2010), pages 302-305.
  4. Blaz?ej, P., Mackiewicz, P., and Cebrat, S. (2011). Algorithm for finding coding signal using homogeneous markov chains independently for three codon positions. In Proceedings of the 2011 International Conference on Bioinformatics and Computational Biology (ICBCB 2011), pages 20-24.
  5. Blaz?ej, P., Mackiewicz, P., and Cebrat, S. (2012). Simulation of bacterial genome evolution under replicational mutational pressures. In Proceedings of 5th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2012), International Conference on Bioinformatics Models, Methods and Algorithms (Bioinformatics 2012), pages 51-57.
  6. Dudkiewicz, M., Mackiewicz, P., Mackiewicz, D., Kowalczuk, M., Nowicka, A., Polak, N., Smolarczyk, K., Kiraga, J., Dudek, M., and Cebrat, S. (2005). Higher mutation rate helps to rescue genes from the elimination by selection. Biosystems, 80:192-199.
  7. Eisen, J., Heidelberg, J., White, O., and Salzberg, S. (2000). Evidence for symmetric chromosomal inversions around the replication origin in bacteria. Genome Biol., 1:11.11-11.19.
  8. Frank, A. and Lobry, J. (1999). Asymmetric substitution patterns: a review of possible underlying mutational or selective mechanisms. Gene, 238:65-77.
  9. Grigoriev, A. (1998). Analysing genomes with cumulative skew diagrams. Nucleic Acids Res., 26:2286-2290.
  10. Hughes, D. (2000). Evaluating genome dynamics: the constraints on rearrangements within bacterial genomes. Genome Biol., 1:REVIEWS0006.
  11. Itoh, T., Takemoto, K., Mori, H., and Gojobori, T. (1999). Evolutionary instability of operon structures disclosed by sequence comparisions of complete microbial genomes. Mol. Biol. Evol., 16:332-346.
  12. Kowalczuk, M., Mackiewicz, P., Mackiewicz, D., Nowicka, A., Dudkiewicz, M., Dudek, M., and Cebrat, S. (2001a). DNA asymmetry and the replicational mutational pressure. J. Appl. Genet., 42:553-577.
  13. Kowalczuk, M., Mackiewicz, P., Mackiewicz, D., Nowicka, A., Dudkiewicz, M., Dudek, M., and Cebrat, S. (2001b). High correlation between the turnover of nucleotides under mutational pressure and the DNA composition. BMC Evol. Biol., 1:13.
  14. Lobry, J. (1996). Asymmetric substitution patterns in the two DNA strands of bacteria. Mol. Biol. Evol., 13:, 660-665.
  15. Lobry, J. and Sueoka, N. (2002). Asymmetric directional mutation pressures in bacteria. Genome Biol., 3:58.
  16. Mackiewicz, D. and Cebrat, S. (2009). To understand nature - computer modelling between genetics and evolution. In J. Miekisz and M. Lachowicz (eds), From Genetics to Mathematics, Series on Advances in Mathematics for Applied Sciences 79, pages 1-33. World Scientific.
  17. Mackiewicz, D., Mackiewicz, P., Kowalczuk, M., Dudkiewicz, M., Dudek, M., and Cebrat, S. (2003). Rearrangements between differently replicating DNA strands in asymmetric bacterial genomes. Acta Microbiol. Pol., 52:245-261.
  18. Mackiewicz, P., Dudkiewicz, M., Kowalczuk, M., Mackiewicz, D., Kiraga, J., Polak, N., Smolarczyk, K., Nowicka, A., Dudek, M., and Cebrat, S. (2004). Differential gene survival under asymmetric directional mutational pressure. LNCS, 3039:687-693.
  19. Mackiewicz, P., Gierlik, A., Kowalczuk, M., Dudek, M., and Cebrat, S. (1999). Asymmetry of nucleotide composition of prokaryotic chromosomes. J. Appl. Genet., 40:1-14.
  20. Mackiewicz, P., Mackiewicz, D., Kowalczuk, M., and Cebrat, S. (2001a). Flip-flop around the origin and terminus of replication in prokaryotic genomes. Genome Biol., 2:1004.1-1004.4.
  21. Mackiewicz, P., Szczepanik, D., Gierlik, A., Kowalczuk, M., Nowicka, A., Dudkiewicz, M., Dudek, M., and Cebrat, S. (2001b). The differential killing of genes by inversions in prokaryotic genomes. J. Mol. Evol., 53:615-621.
  22. McLean, M., Wolfe, K., and Devine, K. (1998). Base composition skews, replication orientation, and gene orientation in 12 prokaryote genomes. J. Mol. Evol., 47:691-696.
  23. Mrazek, J. and Karlin, S. (1998). Strand compositional asymmetry in bacterial and large viral genomes. Proc. Natl. Acad. Sci. U.S.A., 95:3720-3725.
  24. Mushegian, A. and Koonin, E. (1996). Gene order is not conserved in bacterial evolution. Trends Genet., 12:289-290.
  25. Rocha, E. (2006). Inference and analysis of the relative stability of bacterial chromosomes. Mol. Biol. Evol., 23:513-522.
  26. Rocha, E. and Danchin, A. (2001). Ongoing evolution of strand composition in bacterial genomes. Mol. Biol. Evol., 18:1789-1799.
  27. Rocha, E. and Danchin, A. (2003a). Gene essentiality determines chromosome organisation in bacteria. Nucleic Acids Res., 31:5202-5211.
  28. Rocha, E. and Danchin, A. (2003b). Essentiality, not expressiveness, drives gene strand bias in bacteria. Nature Genet., 34:377-378.
  29. Rocha, E., Touchon, M., and Feil, E. (2006). Similar compositional biases are caused by very different mutational effects. Genome Res., 16:1537-1547.
  30. Tillier, E. and Collins, R. (2000a). The contributions of replication orientation, gene direction, and signal sequences to base composition asymmetries in bacterial genomes. J. Mol. Evol., 50:249-257.
  31. Tillier, E. and Collins, R. (2000b). Genome rearrangement by replication-directed translocation. Nature Genet., 26:195-197.
  32. Watanabe, H., Mori, H., Itoh, T., and Gojobori, T. (1997). Genome plasticity as a paradigm of eubacterial evolution. J. Mol. Evol., 44 (Suppl. 1):57-64.
Download


Paper Citation


in Harvard Style

Błażej P., Mackiewicz P., Wańczyk M. and Cebrat S. (2013). Evolution of Bacterial Genome under Changing Mutational Pressure - Computer Simulation Studies . In Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2013) ISBN 978-989-8565-35-8, pages 272-277. DOI: 10.5220/0004192802720277


in Bibtex Style

@conference{bioinformatics13,
author={Paweł Błażej and Paweł Mackiewicz and Małgorzata Wańczyk and Stanisław Cebrat},
title={Evolution of Bacterial Genome under Changing Mutational Pressure - Computer Simulation Studies},
booktitle={Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2013)},
year={2013},
pages={272-277},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004192802720277},
isbn={978-989-8565-35-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2013)
TI - Evolution of Bacterial Genome under Changing Mutational Pressure - Computer Simulation Studies
SN - 978-989-8565-35-8
AU - Błażej P.
AU - Mackiewicz P.
AU - Wańczyk M.
AU - Cebrat S.
PY - 2013
SP - 272
EP - 277
DO - 10.5220/0004192802720277