Visualizing Temporal Behavior in Multifield Particle Simulations

T. S. Reis Santos, F. V. Paulovich, V. Molchanov, L. Linsen, M. C. F. de Oliveira

Abstract

Particle-based simulations generate time-varying multifield volumetric datasets. Visualizations of such volumes traditionally focus on the physical space, displaying particles as glyphs or with volume rendering techniques. In this paper we deal specifically with the issue of helping users to observe and interpret the multidimensional feature space and its temporal behavior, as a complement to existing spatial views. Our approach combines multiple visualizations to assist analysis of time-varying data generated by particle simulations. Coordinated views of both feature and physical spaces allow the observation of particle behavior over specific time periods or the whole temporal domain, rather than describing a single simulation time step. Temporal behavior in the physical space is depicted as pathlines, whereas the temporal behavior of the underlying multidimensional feature space is depicted in a so-called streamfeature visualization. Streamfeatures are pathlines describing changes in feature space along time, obtained by projecting the feature vectors. Direct interaction with these line representations is difficult. Thus, two supporting views are supplied for user interaction, which show 2D projections of both the pathlines (pathline projection view) and the streamfeatures (streamfeature projection view), obtained by projecting geometric features extracted from the lines. By linking all visualizations, users may interact with these views to identify and select representative clusters of lines that reflect similar behavior of particle features. We use data from two particle simulations to illustrate the framework and its potential to support analysis of global temporal behavior and relationships between multiple variables.

References

  1. Akiba, H. and Ma, K.-L. (2007). A tri-space visualization interface for analyzing time-varying multivariate volume data. In Proc. Eurographics/IEEE VGTC Symp. Visualization, pages 115-122.
  2. Blaas, J. and Post, C. P. B. F. (2008). Extensions of parallel coordinates for interactive exploration of large multi-timepoint data sets. IEEE Trans. Vis. Computer Graphics, 14(6):1436-1451.
  3. Co, C. S., Friedman, A., Grote, D. P., Vay, J.-L., Bethel, Wes, E., and Joy, K. I. (2004). Interactive methods for exploring particle simulation data. Lawrence Berkeley National Laboratory.
  4. Falk, M., Grottel, S., and Ertl, T. (2010). Interactive imagespace volume visualization for dynamic particle simulations. In SIGRAD.
  5. Faloutsos, C. and Lin, K.-I. (1995). FastMap. In Proc. ACM SIGMOD Int. Conf. Management of Data, pages 163- 174, New York, New York, USA. ACM Press.
  6. Gribble, C. P., Stephens, A. J., Guilkey, J. E., and Parker, S. G. (2006). Visualizing particle-based simulation datasets on the desktop. In British HCI Works. on Combining Visualization and Interaction to Facilitate Scientific Exploration and Discovery, pages 111-118.
  7. Inselberg, A. (1985). The plane with parallel coordinates. The Visual Computer, 1(2):69-91.
  8. Joia, P., Paulovich, F. V., Coimbra, D., Cuminato, J. A., and Nonato, L. G. (2011). Local affine multidimensional projection. IEEE Trans. Vis. Computer Graphics, 17(12):2563-71.
  9. Jones, C., Ma, K.-L., Ethier, S., and Lee, W.-L. (2008). An integrated exploration approach to visualizing multivariate particle data. Computing in Science and Engineering, 10(4):20-29.
  10. Kruskal, J. B. (1964). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29(1):1-27.
  11. Linsen, L., Long, T. V., and Rosenthal, P. (2009). Linking multi-dimensional feature space cluster visualization to surface extraction from multi-field volume data. IEEE Comp. Graph. and Applications, 29(3):85-89.
  12. Linsen, L., Molchanov, V., Dobrev, P., Rosswog, S., Rosenthal, P., and Long, T. V. (2011). Hydrodynamics - Optimizing Methods and Tools, chapter SmoothViz: Visualization of Smoothed Particles Hydrodynamics Data. inTech.
  13. Linsen, L., Van Long, T., Rosenthal, P., and Rosswog, S. (2008). Surface extraction from multi-field particle volume data using multi-dimensional cluster visualization. IEEE Trans. Vis. Computer Graphics, 14(6):1483-90.
  14. Paulovich, F. V., Nonato, L. G., Minghim, R., and Levkowitz, H. (2008). Least square projection: a fast high-precision multidimensional projection technique and its application to document mapping. IEEE Trans. Vis. Computer Graphics, 14(3):564-75.
  15. Paulovich, F. V., Silva, C. T., and Nonato, L. G. (2010). Two-phase mapping for projecting massive data sets. IEEE Trans. Vis. Computer Graphics, 16(6):1281-90.
  16. Pelleg, D. and Moore, A. (2000). X-means: Extending kmeans with efficient estimation of the number of clusters. In Proc. 7th. Int. Conf. Machine Learning, pages 727-734. San Francisco.
  17. Poco, J., Eler, D., Paulovich, F., and Minghim, R. (2012). Employing 2d projections for fast visual exploration of large fiber tracking. Comput. Graph. Forum, 31(3):1075-1084.
  18. Poco, J., Etemadpour, R., Paulovich, F., Long, T., Rosenthal, P., Oliveira, M., Linsen, L., and Minghim, R. (2011). A framework for exploring multidimensional data with 3D projections. Comput. Graph. Forum, 30(3):1111-1120.
  19. Reddy, B. S. and Chatterji, B. N. (1996). An FFT-based technique for translation, rotation, and scale-invariant image registration. IEEE Trans. Image Processing, 5(8):1266-71.
  20. Tan, P.-n., Steinbach, M., and Kumar, V. (2005). Introduction to Data Mining. Addison Wesley, Boston, MA.
  21. Tejada, E., Minghim, R., and Gustavo Nonato, L. (2003). On improved projection techniques to support visual exploration of multi-dimensional data sets. Information Visualization, 2(4):218-231.
  22. Wei, J., Yu, H., Grout, R., Chen, J., and Ma, K.-L. (2012). Visual analysis of particle behaviors to understand combustion simulations. IEEE Comput. Graph. Appl., 32(1):22-33.
Download


Paper Citation


in Harvard Style

S. Reis Santos T., V. Paulovich F., Molchanov V., Linsen L. and C. F. de Oliveira M. (2013). Visualizing Temporal Behavior in Multifield Particle Simulations . In Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2013) ISBN 978-989-8565-46-4, pages 573-582. DOI: 10.5220/0004207705730582


in Bibtex Style

@conference{ivapp13,
author={T. S. Reis Santos and F. V. Paulovich and V. Molchanov and L. Linsen and M. C. F. de Oliveira},
title={Visualizing Temporal Behavior in Multifield Particle Simulations},
booktitle={Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2013)},
year={2013},
pages={573-582},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004207705730582},
isbn={978-989-8565-46-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2013)
TI - Visualizing Temporal Behavior in Multifield Particle Simulations
SN - 978-989-8565-46-4
AU - S. Reis Santos T.
AU - V. Paulovich F.
AU - Molchanov V.
AU - Linsen L.
AU - C. F. de Oliveira M.
PY - 2013
SP - 573
EP - 582
DO - 10.5220/0004207705730582