Hybrid Particle Lattice Boltzmann Shallow Water for Interactive Fluid Simulations

Jesus Ojeda, Antonio Susín

Abstract

We introduce a hybrid approach for the simulation of fluids based in the Lattice Boltzmann Method for Shallow Waters and particle systems. Our modified LBM Shallow Waters can handle arbitrary underlying terrain and arbitrary fluid depth. It also introduces a novel and simplified method of tracking dry-wet regions. Dynamic rigid bodies are also included in our simulations using a two-way coupling. Certain features of the simulation that the LBM can not handle, as breaking waves, are detected and automatically turned into splash particles. Albeit we use a simple ballistic particle system, our hybrid method can handle more complex systems as SPH. Both the LBM and particle systems are implemented in CUDA, yet dynamic rigid bodies are simulated in CPU. We show the effectiveness of our method with various examples which achieve real-time on commodity hardware.

References

  1. Bailey, P., Myre, J., Walsh, S., Lilja, D., and Saar, M. (2009). Accelerating lattice boltzmann fluid flow simulations using graphics processors. In International Conference on Parallel Processing, pages 550 -557.
  2. Chentanez, N. and M üller, M. (2010). Real-time simulation of large bodies of water with small scale details. In Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA), pages 197-206.
  3. Cords, H. (2007). Mode-splitting for highly detailed, interactive liquid simulation. In Proceedings of the 5th international conference on Computer graphics and interactive techniques in Australia and Southeast Asia, GRAPHITE 7807, pages 265-272, New York, NY, USA. ACM.
  4. Geveler, M., Ribbrock, D., Gö ddeke, D., and Turek, S. (2010). Lattice-boltzmann simulation of the shallowwater equations with fluid-structure interaction on multi- and manycore processors. In Keller, R., Kramer, D., and Weiss, J.-P., editors, Facing the multicore-challenge, pages 92-104. Springer-Verlag.
  5. Goswami, P., Schlegel, P., Solenthaler, B., and Pajarola, R. (2010). Interactive SPH simulation and rendering on the GPU. In Proceedings ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pages 55-64.
  6. He, X. and Luo, L. S. (1997). Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E, 56:6811- 6817.
  7. Hinsinger, D., Neyret, F., and Cani, M.-P. (2002). Interactive animation of ocean waves. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation, SCA 7802, pages 161-166, New York, NY, USA. ACM.
  8. Hou, S., Sterling, J., Chen, S., and Doolen, G. D. (1996). A Lattice Boltzmann Subgrid Model for High Reynolds Number Flows. Fields Institute Communications, 6:151-166.
  9. Kass, M. and Miller, G. (1990). Rapid, stable fluid dynamics for computer graphics. In Proceedings of the 17th annual conference on Computer graphics and interactive techniques, SIGGRAPH 7890, pages 49-57, New York, NY, USA. ACM.
  10. Layton, A. T. and van de Panne, M. (2002). A numerically efficient and stable algorithm for animating water waves. The Visual Computer, 18:41-53. 10.1007/s003710100131.
  11. Lee, H. and Han, S. (2010). Solving the shallow water equations using 2d sph particles for interactive applications. The Visual Computer, 26:865-872.
  12. Obrecht, C., Kuznik, F., Tourancheau, B., and Roux, J.- J. (2011). A new approach to the lattice boltzmann method for graphics processing units. Computers & Mathematics with Applications, 61(12):3628 - 3638.
  13. O'Brien, J. F. and Hodgins, J. K. (1995). Dynamic simulation of splashing fluids. In Proceedings of the Computer Animation, CA 7895, pages 198-. IEEE Computer Society.
  14. Qian, Y. H., D'Humières, D., and Lallemand, P. (1992). Lattice BGK models for Navier-Stokes equation. EPL (Europhysics Letters), 17(6):479.
  15. Salmon, R. (1999). The lattice boltzmann method as a basis for ocean circulation modeling. Journal of Marine Research, 57(3):503-535.
  16. Solenthaler, B., Bucher, P., Chentanez, N., Mü ller, M., and Gross, M. (2011). SPH Based Shallow Water Simulation. In Bender, J., Erleben, K., and Galin, E., editors, VRIPHYS 11: 8th Workshop on Virtual Reality Interactions and Physical Simulations, pages 39-46, Lyon, France. Eurographics Association.
  17. Tessendorf, J. (1999). Simulating ocean water. SIGGRAPH course notes.
  18. Th ömmes, G., Seaïd, M., and Banda, M. K. (2007). Lattice boltzmann methods for shallow water flow applications. International Journal for Numerical Methods in Fluids, 55(7):673-692.
  19. Th ürey, N. (2007). Physically based Animation of Free Surface Flows with the Lattice Boltzmann Method. PhD thesis, Dept. of Computer Science 10, University of Erlangen-Nuremberg.
  20. Th ürey, N., Mü ller-Fischer, M., Schirm, S., and Gross, M. (2007). Real-time breaking waves for shallow water simulations. In Computer Graphics and Applications, 2007. PG 7807. 15th Pacific Conference on, pages 39 -46.
  21. Tö lke, J. (2010). Implementation of a lattice boltzmann kernel using the compute unified device architecture developed by nvidia. Computing and Visualization in Science, 13:29-39. 10.1007/s00791-008-0120-2.
  22. S? t'ava, O., Benes?, B., Brisbin, M., and Kr?ivánek, J. (2008). Interactive terrain modeling using hydraulic erosion. In Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 7808, pages 201-210, Aire-la-Ville, Switzerland, Switzerland. Eurographics Association.
  23. Wei, X., Li, W., Mueller, K., and Kaufman, A. (2004). The lattice-boltzmann method for simulating gaseous phenomena. Visualization and Computer Graphics, IEEE Transactions on, 10(2):164 -176.
  24. Yuksel, C., House, D. H., and Keyser, J. (2007). Wave particles. ACM Trans. Graph., 26(3).
  25. Zhou, J. G. (2004). Lattice Boltzmann Methods for Shallow Water Flows. Springer.
  26. Zhou, J. G. (2011). Enhancement of the labswe for shallow water flows. Journal of Computational Physics, 230(2):394 - 401.
Download


Paper Citation


in Harvard Style

Ojeda J. and Susín A. (2013). Hybrid Particle Lattice Boltzmann Shallow Water for Interactive Fluid Simulations . In Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2013) ISBN 978-989-8565-46-4, pages 217-226. DOI: 10.5220/0004211302170226


in Bibtex Style

@conference{grapp13,
author={Jesus Ojeda and Antonio Susín},
title={Hybrid Particle Lattice Boltzmann Shallow Water for Interactive Fluid Simulations},
booktitle={Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2013)},
year={2013},
pages={217-226},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004211302170226},
isbn={978-989-8565-46-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2013)
TI - Hybrid Particle Lattice Boltzmann Shallow Water for Interactive Fluid Simulations
SN - 978-989-8565-46-4
AU - Ojeda J.
AU - Susín A.
PY - 2013
SP - 217
EP - 226
DO - 10.5220/0004211302170226