Dense Multi-modal Registration with Structural Integrity using Non-local Gradients

Sheshadri Thiruvenkadam

Abstract

In this work, the challenging problem of dense non-rigid registration [NRR] for multi-modal data is addressed. We look at a class of differentiable metrics based on weighted L2 distance of non-local image gradients. For intensity dependent choice of weights, the metric is seen to give enhanced multi-modal capability than using just gradients. In a variational dense deformation setting, the metric is coupled with non-local regularization to make the framework feature based. The above combination maintains the visual quality of the registered image, and gives a good correspondence for features of similar geometry under the challenges of noise, large motion, and presence of small structures. We also address computational speed ups of the energy minimization using an approximation scheme. The proposed approach is demonstrated on synthetic and medical data, and results are quantitatively compared with MI based, diffeomorphic NRR.

References

  1. Bruhn, A., Weickert, J., and Schnrr, C. (2005). Lucas/kanade meets horn/schunck: Combining local and global optic flow methods. International Journal of Computer Vision, 61:211-231.
  2. Haber, E. and Modersitzki., J. (2007). Intensity gradient based registration and fusion of multimodal images. methods of information in medicine. Methods of information in medicine, 46(3):292-299.
  3. Heinrich, M. P., Jenkinson, M., and et al. (2011). Nonlocal shape descriptor: a new similarity metric for deformable multi-modal registration. MICCAI'11, pages 541-548.
  4. Hellier, P. and Barillot, C. (2000). Multimodal non-rigid warping for correction of distortions in functional mri. MICCAI, pages 512-520.
  5. Holden, M. (2008). A review of geometric transformations fornonrigid body registration. IEEE Transactions on Medical Imaging, 27(1).
  6. Jost, J. and Li-Jost, X. (1998). Calculus of variations. Cambridge Univ. Press.
  7. Likar, B. and Pernus, F. (2001). A hierarchical approach to elastic registration based on mutual information. Image Vision Comput., 19(1-2):33-44.
  8. Loeckx, D., Slagmolen, P., Maes, F., Vandermeulen, D., and Suetens, P. (2010). Nonrigid image registration using conditional mutual information. IEEE Transactions on Medical Imaging, 29(1).
  9. Lowe, D. G. (2004). Distinctive image features from scaleinvariant keypoints. Int. J. Comput. Vision, 60(2).
  10. Lu, H., Reyes, M., and et al. (2010). Multi-modal diffeomorphic demons registration based on point-wise mutual information. ISBI, 27(1).
  11. Mikolajczyk, K. and Schmid, C. (2005). A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(10):1615-1630.
  12. Pluim, J. P. W., Maintz, J. B. A., and Viergever, M. A. (2003). Mutual information based registration of medical images: A survey. IEEE Trans. Med. Imaging, 22(8):986-1004.
  13. Sun (2010). Secrets of optical flow estimation and their principles. CVPR, 12(1):234-778.
  14. Werlberger (2010). Motion estimation with non-local total variation regularization. CVPR, 13(1):234-778.
  15. Zitova, B. and Flusser, J. (2003). Image registration methods:a survey. Image Vision Comput., 21(11):977- 1000.
Download


Paper Citation


in Harvard Style

Thiruvenkadam S. (2013). Dense Multi-modal Registration with Structural Integrity using Non-local Gradients . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2013) ISBN 978-989-8565-47-1, pages 258-263. DOI: 10.5220/0004211702580263


in Bibtex Style

@conference{visapp13,
author={Sheshadri Thiruvenkadam},
title={Dense Multi-modal Registration with Structural Integrity using Non-local Gradients},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2013)},
year={2013},
pages={258-263},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004211702580263},
isbn={978-989-8565-47-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2013)
TI - Dense Multi-modal Registration with Structural Integrity using Non-local Gradients
SN - 978-989-8565-47-1
AU - Thiruvenkadam S.
PY - 2013
SP - 258
EP - 263
DO - 10.5220/0004211702580263