Data Visualisation and Statistical Analysis within the Decision Making Process

Jamie Mahoney

Abstract

Large amounts of data are collected and stored within universities, but little is done to reuse this data to support decision making processes. This paper discusses the use of data visualisation and statistical analysis as methods of making sense of the collected data, analysing it to assess the effects of historical institutional decisions and discusses the use of such techniques to aid decision making processes.

References

  1. Bastian, M., Heymann, S., and Jacomy, M. (2009). Gephi: An open source software for exploring and manipulating networks. International AAAI Conference on Weblogs and Social Media.
  2. Bertschi, S., Bresciani, S., Crawford, T., R, G., Kienreich, W., Lindner, M., Sabol, V., and Moere, A. (2011). What is knowledge visualization? perspectives on an emerging discipline. 15th International Conference on Information Visualization, pages 329-336.
  3. Burkhard, R. (2005). Knowledge Visualization: The Use of Complementary Visual Representations for the Transfer of Knowledge - A Model, a Framework, and Four New Approaches. PhD thesis, Swiss Federal Institute of Technology (ETH Zurich).
  4. Fortunato, S. and Barthélemy, M. (2007). Resolution limit in community detection. Proceedings of the National Academy of Sciences of the United States of America, 104(1):36-41.
  5. Gilbert, F. and Auber, D. (2010). From database to graph visualization. 14th International Conference Information Visualization, pages 128-133.
  6. Keim, D. (2002). Information visualization and visual data mining. IEEE Transactions on Visualization and Computer Graphics, 7(1):1-8.
  7. Kumpula, J., Saramäki, J., Kaski, K., and Kertesz, J. (2007). Limited resolution in complex network community detection with potts model approach. The European Physics Journal B, 56(1):41-45.
  8. Masud, L., Valsecchi, F., and Ciuccarellia, P. (2010). From data to knowledge - visualizations as transformation processes within the data - information - knowledge continuum. 14th International Conference Information Visualization, pages 445 - 499.
  9. Rinderle, S., Bobrik, R., Reichert, M., and Bauer, T. (2006). Business process visualizaiton - use cases, challenges, solutions. Proceedings of the Eighth International Conference on Enterprise Information Systems (ICEIS'06): Information System Analysis and Specification, pages 204 - 211.
  10. Robertson, P. (1990). A methodology for scientific data visualisation : Choosing representations based on a natural scene paradigm. Proceedings of the First IEEE Conference on Visulaisation, pages 114-123.
  11. Tufte, E. R. (2001). The Visual Display of Quantitative Information. Graphic Press USA, 2nd edition.
Download


Paper Citation


in Harvard Style

Mahoney J. (2013). Data Visualisation and Statistical Analysis within the Decision Making Process . In Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2013) ISBN 978-989-8565-46-4, pages 489-494. DOI: 10.5220/0004212604890494


in Bibtex Style

@conference{ivapp13,
author={Jamie Mahoney},
title={Data Visualisation and Statistical Analysis within the Decision Making Process},
booktitle={Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2013)},
year={2013},
pages={489-494},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004212604890494},
isbn={978-989-8565-46-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2013)
TI - Data Visualisation and Statistical Analysis within the Decision Making Process
SN - 978-989-8565-46-4
AU - Mahoney J.
PY - 2013
SP - 489
EP - 494
DO - 10.5220/0004212604890494