Image Guided Cost Aggregation for Hierarchical Depth Map Fusion

Thilo Borgmann, Thomas Sikora

Abstract

Estimating depth from a video sequence is still a challenging task in computer vision with numerous applications. Like other authors we utilize two major concepts developed in this field to achieve that task which are the hierarchical estimation of depth within an image pyramid as well as the fusion of depth maps from different views. We compare the application of various local matching methods within such a combined approach and can show the relative performance of local image guided methods in contrast to commonly used fixed–window aggregation. Since efficient implementations of these image guided methods exist and the available hardware is rapidly enhanced, the disadvantage of their more complex but also parallel computation vanishes and they will become feasible for more applications.

References

  1. Collins, R. (1996). A space-sweep approach to true multi-image matching. In Computer Vision and Pattern Recognition, 1996. Proceedings CVPR'96, 1996 IEEE Computer Society Conference on, pages 358- 363. IEEE.
  2. Cornelis, N. and Van Gool, L. (2005). Real-time connectivity constrained depth map computation using programmable graphics hardware. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, volume 1, pages 1099-1104. IEEE.
  3. Crow, F. (1984). Summed-area tables for texture mapping. ACM SIGGRAPH Computer Graphics, 18(3):207- 212.
  4. He, K., Sun, J., and Tang, X. (2010). Guided image filtering. Computer Vision-ECCV 2010, pages 1-14.
  5. Hirschmüller, H., Innocent, P., and Garibaldi, J. (2002). Real-time correlation-based stereo vision with reduced border errors. International Journal of Computer Vision, 47(1):229-246.
  6. Mei, X., Sun, X., Zhou, M., Jiao, S., Wang, H., and Zhang, X. (2011). On building an accurate stereo matching system on graphics hardware. In Computer Vision Workshops (ICCV Workshops), 2011 IEEE International Conference on, pages 467-474. IEEE.
  7. Merrell, P., Akbarzadeh, A., Wang, L., Mordohai, P., Frahm, J., Yang, R., Nistér, D., and Pollefeys, M. (2007). Real-time visibility-based fusion of depth maps. In Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on, pages 1-8. Ieee.
  8. Nalpantidis, L., Amanatiadis, A., Sirakoulis, G., Kyriakoulis, N., and Gasteratos, A. (2009). Dense disparity estimation using a hierarchical matching technique from uncalibrated stereo vision. In Imaging Systems and Techniques, 2009. IST 7809. IEEE International Workshop on, pages 427 -431.
  9. Rhemann, C., Hosni, A., Bleyer, M., Rother, C., and Gelautz, M. (2011). Fast cost-volume filtering for visual correspondence and beyond. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 3017-3024. IEEE.
  10. Scharstein, D., Szeliski, R., and Zabih, R. (2001). A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. In Stereo and Multi-Baseline Vision, 2001. (SMBV 2001). Proceedings. IEEE Workshop on, pages 131 -140.
  11. Seitz, S., Curless, B., Diebel, J., Scharstein, D., and Szeliski, R. (2006). A comparison and evaluation of multi-view stereo reconstruction algorithms. In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, volume 1, pages 519 - 528.
  12. Strecha, C., von Hansen, W., Van Gool, L., Fua, P., and Thoennessen, U. (2008). On benchmarking camera calibration and multi-view stereo for high resolution imagery. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1 -8.
  13. Tombari, F., Mattoccia, S., Di Stefano, L., and Addimanda, E. (2008a). Classification and evaluation of cost aggregation methods for stereo correspondence. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1-8. IEEE.
  14. Tombari, F., Mattoccia, S., Di Stefano, L., and Addimanda, E. (2008b). Near real-time stereo based on effective cost aggregation. In Pattern Recognition, 2008. ICPR 2008. 19th International Conference on, pages 1-4. IEEE.
  15. Unger, C., Wahl, E., Sturm, P., Ilic, S., et al. (2010). Probabilistic disparity fusion for real-time motion-stereo. Citeseer.
  16. Veksler, O. (2003). Fast variable window for stereo correspondence using integral images. In Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on, volume 1, pages I-556. IEEE.
  17. Wang, L., Gong, M., Gong, M., and Yang, R. (2006). How far can we go with local optimization in real-time stereo matching. In 3D Data Processing, Visualization, and Transmission, Third International Symposium on, pages 129-136. IEEE.
  18. Yang, R. and Pollefeys, M. (2003). Multi-resolution realtime stereo on commodity graphics hardware. In Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on, volume 1, pages I-211. IEEE.
  19. Yoon, K. and Kweon, I. (2006). Adaptive support-weight approach for correspondence search. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 28(4):650-656.
  20. Zach, C. (2008). Fast and high quality fusion of depth maps. In Proceedings of the International Symposium on 3D Data Processing, Visualization and Transmission (3DPVT), volume 1.
  21. Zach, C., Karner, K., and Bischof, H. (2004). Hierarchical disparity estimation with programmable 3d hardware. In Proc. of WSCG, Pilsen, Czech Republic, pages 275-282.
  22. Zhang, G., Jia, J., Wong, T., and Bao, H. (2009). Consistent depth maps recovery from a video sequence. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 31(6):974-988.
  23. Zitnick, C., Kang, S., Uyttendaele, M., Winder, S., and Szeliski, R. (2004). High-quality video view interpolation using a layered representation. In ACM Transactions on Graphics (TOG), volume 23, pages 600- 608. ACM.
Download


Paper Citation


in Harvard Style

Borgmann T. and Sikora T. (2013). Image Guided Cost Aggregation for Hierarchical Depth Map Fusion . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2013) ISBN 978-989-8565-48-8, pages 199-207. DOI: 10.5220/0004212901990207


in Bibtex Style

@conference{visapp13,
author={Thilo Borgmann and Thomas Sikora},
title={Image Guided Cost Aggregation for Hierarchical Depth Map Fusion},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2013)},
year={2013},
pages={199-207},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004212901990207},
isbn={978-989-8565-48-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2013)
TI - Image Guided Cost Aggregation for Hierarchical Depth Map Fusion
SN - 978-989-8565-48-8
AU - Borgmann T.
AU - Sikora T.
PY - 2013
SP - 199
EP - 207
DO - 10.5220/0004212901990207