A New Local Adaptive Mass Detection Algorithm in Mammograms

Ehsan Koozegar, Mohsen Soryani, Ines Domingues

Abstract

Mammography is the most effective procedure for an early detection of breast abnormalities. Masses are a type of abnormality which are very difficult to be visually detected on mammograms. In this paper an efficient method for detection of masses in mammograms is introduced and tested. The algorithm is inspired by binary search and was evaluated both on mini-MIAS and INBreast databases. Mini-MIAS results show that our algorithm outperforms other competing methods. For INBreast database there are no other published mass detection results for comparison, but we believe that our algorithm has good performance.

References

  1. Eltonsy, N. H., Tourassi, G. D., and Elmaghraby, A. S. (2007). A concentric morphology model for detection of masses in mammography. IEEE Transactions on Medical Imaging, 26(6):880-889.
  2. Gao, X., Wang, Y., Li, X., and Tao, D. (2010).On combining morphological component analysis and concentric morphology model for mammographic mass detection. IEEE transactions on information technology in biomedicine, 14(2):266-273.
  3. Kom, G., Tiedeu, A., and Kom, M. (2007). Automated detection of masses in mammograms by local adaptive thresholding. Computers in Biology and Medicine, 37(1):37-48.
  4. Malagelada, A. O. (2007). Automatic mass segmentation in mammographic images. Ph.D. dessertation, Department of Electronics-Computer Science and Automatic Control, University of Girona.
  5. Martins, L. D. O., Paiva, A. C. D., and Gattass, M. (2009). Detection of breast masses in mammogram images using growing neural gas algorithm and ripleys k function. Journal of Signal Processing Systems, 55:7790.
  6. Mencattini, A. and Salmeri, M. (2011). Breast masses detection using phase portrait analysis and fuzzy inference systems. International Journal of Computer Assisted Radiology and Surgery, page 111.
  7. Moreira, I. C., Amaral, I., Domingues, I., Cardoso, A., Cardoso, M. J., and Cardoso, J. S. (2012). INbreast: toward a full-field digital mammographic database. Academic radiology, 19(2):236-248.
  8. Nguyen, V. D., Nguyen, D. T., Nguyen, T. D., Thi, N., and Tran, D. H. (2010). A program for locating possible breast masses on mammograms. In Proceeding of the 3rd International Conference on the Development of BME in Vietnam, pages 11-14.
  9. Oliveira, M. L. D., Braz, J. G., Cardoso, P., and Gattass, M. (2009). Detection of masses in digital mammograms using k-means and support vector machine. Electronic Letters on Computer Vision and Image Analysis, 8(2):39-50.
  10. Oliver, A., Freixenet, J., Marti, J., Prez, E., Pont, J., Denton, E. R. E., and Zwiggelaar, R. (2010). A review of automatic mass detection and segmentation in mammographic images. Medical Image Analysis, 14(2):87-110.
  11. Oliviera, J. d., Albuquerque, A. d., and Deserno, T. M. (2011). Content-based image retrieval applied to BIRADS tissue classification in screening mammography. World Journal of Radiology, 3(1):24- 31.
  12. Petrick, N., Chan, H., Sahiner, B., and Wei, D. (1996). An adaptive Density-Weighted contrast enhancement filter for mammographic breast mass detection. IEEE Transactions on Medical Imaging, 15(1):59-67.
  13. Sampaio, W. B., Diniz, E. M., Silva, A. C., de Paiva, A. C., and Gattass, M. (2011). Detection of masses in mammogram images using CNN, geostatistic functions and SVM. Computers in Biology and Medicine, 41(8):653-664.
  14. Suckling, J., Parker, J., Dance, D. R., Astley, S., Hutt, I., Boggis, C., Ricketts, I., Stamatakis, E., Cerneaz, N., Kok, S. L., Taylor, P., Betal, D., and Savage, J. (1994). The mammographic image analysis society digital mammogram database. In Exerpta Medica. International Congress Series 1069, volume 1069, pages 375-378.
Download


Paper Citation


in Harvard Style

Koozegar E., Soryani M. and Domingues I. (2013). A New Local Adaptive Mass Detection Algorithm in Mammograms . In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2013) ISBN 978-989-8565-36-5, pages 133-137. DOI: 10.5220/0004218201330137


in Bibtex Style

@conference{biosignals13,
author={Ehsan Koozegar and Mohsen Soryani and Ines Domingues},
title={A New Local Adaptive Mass Detection Algorithm in Mammograms},
booktitle={Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2013)},
year={2013},
pages={133-137},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004218201330137},
isbn={978-989-8565-36-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2013)
TI - A New Local Adaptive Mass Detection Algorithm in Mammograms
SN - 978-989-8565-36-5
AU - Koozegar E.
AU - Soryani M.
AU - Domingues I.
PY - 2013
SP - 133
EP - 137
DO - 10.5220/0004218201330137