Semantic Interoperability Solution for Multicentric Breast Cancer Trials at the Integrate EU Project

Sergio Paraiso-Medina, David Perez-Rey, Raúl Alonso-Calvo, Brecht Claerhout, Kristof de Schepper, Philippe Hennebert, Jérôme Lhaut, Jasper Van Leeuwen, Anca Bucur


The introduction of –omic information within current clinical treatment is one of the main challenges to transfer the huge amount of genomic-based results. The number of potential translational clinical trials is therefore experiencing a dramatic increase, with the corresponding increment on patient variability. Such scenario requires a larger population to recruit a minimum set of patients that may involve multi-centric trials, with associated challenges on heterogeneous data integration. To ensure sustainability on clinical trial management, semantic interoperability is one of the main goals addressed by international initiatives such as the EU funded INTEGRATE project: “Driving Excellence in Integrative Cancer Research”. This paper describes the approach adopted within an international research initiative, providing a homogeneous platform to manage clinical information from patients on breast cancer clinical trials. Following the project “leitmotif” of reusing standards supported by a large community, we have developed a solution providing a common data model (i.e. HL7 RIM-based), a biomedical domain vocabulary (i.e. SNOMED) as core dataset and resources from the semantic web community adapted for the biomedical domain. After one year and a half of collaboration, the INTEGRATE consortium has been able to develop a solution providing the reasoning capabilities required to solve clinical trial patient recruitment. The next challenge will be to extend the current solution to support a cohort selection tool allowing prospective analysis and predictive modeling.


  1. Antonioletti, M., Atkinson Malcolm, Baxter R., Borley A., Chue N. P., Collins B., Hardman N., et al., 2005. The Design and Implementation of Grid Database Services in OGSA-DAI. In Concurrency and Computation: Practice and Experience, Volume 17, Issue 2-4, Pages 357-376.
  2. Baader F., Lutz C and Suntisrivaraporn B., 2006. CEL - a polynomial.time reasoner for life science ontologies. In Lectures Notes in Computer Science, Volume 4130/2006, 287-291, DOI: 10.1007/11814771_25.
  3. Bizer C. and Cyganiak R., 2006. D2R Server - Publishing relational databases on the semantic web. In the 5th International Sematic Web Conference (ISWC).
  4. Brochhausen M., Spear A. D., Cocos C., Weiler G., Martin L., Anguita A., Stenzhorn H., Daskalaki E., Schera F., Schwarz U., Sfakianakis S., Kiefer S., Dörr M., Graf N. and Tsinakis M. ,2011. The ACGT Master Ontology and its applications--towards an ontologydriven cancer research and management system. In J Biomed Inform; 44(1): 8-25.
  5. Broekstra J, Kampman A and van Harmelen F. 2002. Sesame: An Architecture for Storing and Querying RDF and RDF Schema. In: Proceedings of the First International Semantic Web Conference (ISWC2002). Number 2342 in Lecture Notes in Computer Science (LNCS), Springer-Verlag (2002) 54-68.
  6. Brown E. G., Wood L. and Wood S., 1999. The Medical Dictionary for Regulatory Activities (MedDRA). In Drug Safety, Volume 20, Number 2, 109-117.
  7. Erling O. and Mikhailov I., 2009. RDF support in the Virtuso DBMS. In Studies in Computational Intelligence, Volume 221/2009, 7-24.
  8. Eschenbach A. von and Buetow K., 2006. Cancer Informatic Vision: caBIG. In Cancer Informatics, vol 2. Pages 22-24.
  9. Globus Toolkit from Globus Alliance. Available at: [16 July 2012]
  10. HL7, Reference Information Model. Available at: [16 July 2012]
  11. INTEGRATE Driving Excellence in Integrative Cancer Research. Available at: [16 July 2012]
  12. Kazakov Y, Krötzsch M and Simancik F. 2011. Concurrent classification of EL ontologies. In Lectures Notes in Computer Science, Volume 7031/2011, 305- 320.
  13. Kazakov Y., Krötzsch M. and Simancík F. 2012. ELK: a reasoner for OWL EL ontologies. In Tech. rep.
  14. Kiryakov A., Ognyanov D. and Manov D., 2005. OWLIM - A pragmatic semantic repository for OWL. In Lectures Notes in Computer Science, volume 3807/2005, 182-192.
  15. Lawley M. and Bousquet C., 2010. Fast Classification in Protege: Snorocket as an OWL2 EL Reasoner. In Australasian Ontology Workshop.
  16. Martin L., Anguita A., Graf N., Tsinakis M., Brochhausen M., Rüping S., Sfakianakis S, Senqstaq T., Buffa F. and Stenzhorn H., 2011. ACGT: advancing clinicgenomic trials on cancer - four years of experience. In Stud Health Technol Inform, 169:734-8.
  17. McDonald C. J., Huff S. M., Suico J. G., Hill G., Leavelle D., Aller R., Forrey A., Mercer K., DeMoor G., Hook J., Williams W., Case J. and Maloney P., 2003. LOINC, a universal standard for identifying laboratory observations: a 5-year update. In Clinical Chemistry, vol 49. No. 4, 624-633.
  18. McGuinness D. L. and Van Harmelen F., 2004. OWL Web Ontology Language Overview. W3C Recommendation, available at: TR/owl-features/ [16 July 2012]
  19. Murphy Shawn N, Weber G, Mendis M, Gainer V, Chueh HC, Churchill S and Kohane I. 2010. Serving the enterprise and beyond with informatics for integrating biology and the bedside (i2b2). In J Am Med Inform Assoc 2010; 17:124-130.
  20. Neo-ALTTO, Neo-Adjunvant Lapatinib and Trastuzumab Treatment Optimisation Trial. Available at: [16 July, 2012]
  21. Parsia B. and Sirin E., 2004. Pellet: An OWL DL reasoner. In ISWC 2004, 2004. ISWC.
  22. Shearer R, Motik B and Horrocks I. 2008. HermiT: a highly-efficient OWL reasoner. In Proceedings of the 5th International Workshop on OWL: Experiences and Directions (OWLED 2008): 26-27.
  23. SNOMED Clinical Terms Core Content. Available at: [16 July 2012]
  24. Stang P. E., Ryan P. B., Racoosin J. A., Overhage J. M., Hartzema AG, Reich C, Welebob E., Scarnecchia T and Woodcock J., 2010. Advancing the science for active surveillance: rationale and design for the Observational Medical Outcomes Partnership. In Ann Intern Med. 2010 Nov 2;153(9):600-6.
  25. Tsarkov D. and Horrocks I., 2003. Reasoner prototype: Implementing new reasoner with datatypes support. In WonderWeb Project Deliverable.
  26. TOP, Jules Bordet Institute. Topoisomerase II Alpha Gene Amplification and Protein Overexpression Predicting Efficacy of Epirubicin (TOP). Available at: [16 July, 2012]

Paper Citation

in Harvard Style

Paraiso-Medina S., Perez-Rey D., Alonso-Calvo R., Claerhout B., de Schepper K., Hennebert P., Lhaut J., Van Leeuwen J. and Bucur A. (2013). Semantic Interoperability Solution for Multicentric Breast Cancer Trials at the Integrate EU Project . In Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2013) ISBN 978-989-8565-37-2, pages 34-41. DOI: 10.5220/0004223400340041

in Bibtex Style

author={Sergio Paraiso-Medina and David Perez-Rey and Raúl Alonso-Calvo and Brecht Claerhout and Kristof de Schepper and Philippe Hennebert and Jérôme Lhaut and Jasper Van Leeuwen and Anca Bucur},
title={Semantic Interoperability Solution for Multicentric Breast Cancer Trials at the Integrate EU Project},
booktitle={Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2013)},

in EndNote Style

JO - Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2013)
TI - Semantic Interoperability Solution for Multicentric Breast Cancer Trials at the Integrate EU Project
SN - 978-989-8565-37-2
AU - Paraiso-Medina S.
AU - Perez-Rey D.
AU - Alonso-Calvo R.
AU - Claerhout B.
AU - de Schepper K.
AU - Hennebert P.
AU - Lhaut J.
AU - Van Leeuwen J.
AU - Bucur A.
PY - 2013
SP - 34
EP - 41
DO - 10.5220/0004223400340041