A New Physarum Learner for Network Structure Learning from Biomedical Data

T. Schön, M. Stetter, A. M. Tomé, E. W. Lang

Abstract

A novel structure learning algorithm for Bayesian Networks based on a Physarum Learner is presented. The length of the connections within an initially fully connected Physarum-Maze is taken as the inverse Pearson correlation coefficient between the connected nodes. The Physarum Learner then estimates the shortest indirect paths between each pair of nodes. In each iteration, a score of the surviving edges is incremented. Finally, the highest scored connections are combined to form a Bayesian Network. The novel Physarum Learner method is evaluated with different configurations and compared to the LAGD Hill Climber showing comparable performance with respect to quality of training results and increased time efficiency for large data sets.

References

  1. Brummitt, C., Laureyns, I., Lin, T., Martin, D., Parry, D., Timmers, D., Volfson, A., Yang, T., Yaple, H., and Rossi, M. L. (2010). A Mathematical Study of Physarum polycephalum. The Tero Model.
  2. Davenport, E. C. and El-Sanhurry, N. A. (1991). Phi/Phimax: Review and Synthesis. Educational and Psychological Measurement, 51(4):821-828.
  3. Ito, K., Johansson, A., Nakagaki, T., and Tero, A. (2011). Convergence Properties for the Physarum Solver. arXiv:1101.5249v1.
  4. Koller, D. and Friedman, N. (2009). Probabilistic graphical models: principles and techniques. The MIT Press.
  5. Korb, K. and Nicholson, A. (2010). Bayesian Artificial Intelligence. Chapman and Hall, 2nd edition.
  6. Lauritzen, S. L. and Spiegelhalter, D. J. (1988). Local Computation with Probabilities on Graphical Structures and their Application to Expert Systems. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 50(2):157-224.
  7. Nakagaki, T. (2001). Smart behavior of true slime mold in a labyrinth. Research in Microbiology, 152(9):767-770.
  8. Nakagaki, T., Yamada, H., and Hara, M. (2004). Smart network solutions in an amoeboid organism. Biophysical Chemistry, 107(1):1-5.
  9. Nakagaki, T., Yamada, H., and Toth, A. (2000). Intelligence: Maze-solving by an amoeboid organism. Nature, 407(6803):470.
  10. Nakagaki, T., Yamada, H., and Tóth, Í . (2001). Path finding by tube morphogenesis in an amoeboid organism. Biophysical Chemistry, 92(1-2):47-52.
  11. Tero, A., Kobayashi, R., and Nakagaki, T. (2006). Physarum solver: A biologically inspired method of road-network navigation. Physica A, 363(1):115-119.
  12. Tero, A., Kobayashi, R., and Nakagaki, T. (2007). A mathematical model for adaptive transport network in path finding by true slime mold. J. Theo. Biol., 244(4):553- 564.
  13. Tero, A., Yumiki, K., Kobayashi, R., Saigusa, T., and Nakagaki, T. (2008). Flow-network adaptation in Physarum amoebae. Theory in Biosciences, 127(2):89-94.
  14. Tomoyuki, M. and Isamu, O. (2008). Physarum can solve the shortest path problem on riemannian surface mathematically rigorously. Int. J. Pure and Appl. Math., (47 (3)):353-369.
Download


Paper Citation


in Harvard Style

Schön T., Stetter M., M. Tomé A. and W. Lang E. (2013). A New Physarum Learner for Network Structure Learning from Biomedical Data . In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2013) ISBN 978-989-8565-36-5, pages 151-156. DOI: 10.5220/0004227401510156


in Bibtex Style

@conference{biosignals13,
author={T. Schön and M. Stetter and A. M. Tomé and E. W. Lang},
title={A New Physarum Learner for Network Structure Learning from Biomedical Data},
booktitle={Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2013)},
year={2013},
pages={151-156},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004227401510156},
isbn={978-989-8565-36-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2013)
TI - A New Physarum Learner for Network Structure Learning from Biomedical Data
SN - 978-989-8565-36-5
AU - Schön T.
AU - Stetter M.
AU - M. Tomé A.
AU - W. Lang E.
PY - 2013
SP - 151
EP - 156
DO - 10.5220/0004227401510156