Bioimpedance Parameter as a Risk Factor to Assess Pine Decay - An Innovative Approach to the Diagnosis of Plant Diseases

E. Borges, M. Sequeira, André F. V. Cortez, H. Catarina Pereira, T. Pereira, V. Almeida, T. M. Vasconcelos, I. M. Duarte, N. Nazaré, J. Cardoso, C. Correia

2013

Abstract

Electrical impedance spectroscopy, EIS, has been proving efficacy and utility in a wide range of areas, from the characterization of biological tissues to living organisms. Several commercial solutions, with high precision and resolution, are available. Nonetheless, the typical equipments are expensive, unfeasible for in vivo and in field applications and unspecific for concrete applications. These features, together with the lately demands in the vegetal field, fundament this work. Actually, the fast spread of asymptomatic forest diseases, with no cure available to date, such as the pinewood disease, PWD, constitute a problem of economical and forestall huge proportions. Herein is proposed a portable EIS system, for biological applications, able to perform AC current or voltage scans within a selectable frequency range. The procedure and the results obtained for a population of 24 young pine trees (Pinus pinaster Aiton) are also presented. Pine trees were kept in a controlled environment and were inoculated with the nematode (Bursaphelenchus xylophilus Nickle), that causes the PWD, and also with bark beetles (Tomiscus destruens Wollaston). Some degree of discrimination between different physiological states was achieved. These results may constitute a first innovative approach to the diagnosis of such types of diseases.

References

  1. Bauchot, A. D., Harker, F. R. and Arnold, W. M., (2000). The Use of Electrical Impedance Spectroscopy to Assess the Physiological Condition of Kiwifruit. Postharvest Biology and Technology, 18 9-18.
  2. Callegaro, L., (2009). The Metrology of Electrical Impedance at High Frequency: a Review. Meas. Sci. Techno, 20 022002.
  3. Dean, D. A., Ramanathan, T., Machado, D. and Sundararajan, R., (2008). Electrical Impedance Spectroscopy Study of Biological Tissues. J Elesctrostat, 66 (3-4): 165-177.
  4. Dejmek, P. and Miyawaki O., (2002). Relantionship between the Electrical and Rheological Properties of Potato Tuber Tissue after Various Forms of Processing. Biosci. Biotechnol. Biochem., 66 (6), 1218-1223.
  5. Fang, Q., Liu, X. and Cosic, I., (2007). Bioimpedance Study on Four Apple Varieties. IFMBE Proceedings, 17, 114-117.
  6. Fukuma, H., Tanaka, K. and Yamaura, I., (2001). Measurement of Impedance of Columnar Botanical Tissue Using the Multielectrode Method. Electronics and Communications in Japan, 3, 84, 2.
  7. Giouvanoudi, A. C. and Spyrou N. M., (2008). Epigastric Electrical Impedance for the Quantitative Determination of the Gastric Acidity. Physiol. Meas., 29 1305-1317.
  8. Grimnes, S. and Martinsen, O. (2008). Bioimpedance & Bioelectricity Basics, 2nd Edition. Academic Press of Elsevier.
  9. Harker, F. R. and Maindonald, J. H., (1994). Ripening of Nectarine Fruit - Changes in the Cell Wall, Vacuole, and Membranes Detected Using Electrical Impedance Measurements. Plant Physiol, 106: 165-171.
  10. Hayashi, T., Todoriki, S., Otobe, K., Sugiyama, J., (1992). Impedance Measuring Technique for Identifying Irradiated Potatoes. Biosci. Biotechnol. Biochem., 56 (12), 1929-1932.
  11. He, C., Zhang, L., Liu, B., Xu, Z. and Zhang, Z., (2008). A Digital Phase-sensitive Detector for Electrical Impedance Tomography. IEEE proceedings.
  12. Ivorra, A., (2003). Bioimpedance Monitoring for Physicians: an Overview. Centre Nacional de Microelectrònica, Biomedical Applications Group.
  13. Kyle, U. et al., (2004). Bioelectrical Impedance Analysis - Part I: Review of Principles and Methods. Clinical Nutrition, 23, 1226-1243.
  14. Pliquett, U., (2010). Bioimpedance: A Review for Food Processing. Food Eng Rev, 2:74-94.
  15. Rafiei-Naeini, M., Wright P. and McCann, H., (2007). Low-Noise Measurements for Electrical Impedance Tomography. IFMBE Proceedings, 17 324-327.
  16. Repo, T., Zhang, G., Ryyppö, A. and Rikala, R., (2000). The Electrical Impedance Spectroscopy of Scots Pine (Pinus sylvestris L.) Shoots in Relation to Cold Acclimation. Journal of Experimental Botany, 51, 353, 2095-2107.
  17. Ross, A. S., Saulnier, G. J., Newell, J. C. and Isaacson, D., (2003). Current Source Design for Electrical Impedance Tomography. Physiol. Meas., 24 509-516.
  18. Saulnier, G. J, Ross, A. S. and Liu, n., (2006). A HighPrecision Voltage Source for EIT. Physiol. Meas., 27 S221-S236.
  19. Seoane, F., Bragós, R. and Lindecrantz, K. (2006). Current Source for Multifrequency Broadband Electrical Bioimpedance Spectroscopy Systems. A Novel Approach. Proceedings of the 28th IEEE, 1-4244-0033.
  20. Väinöla, A. and Repo, T. (2000). Impedance Spectroscopy in Frost Hardiness Evaluation of Rhododendron Leaves. Annals of Botany, 86: 799-805.
  21. Vozáry, E. and Mészáros, P., (2007). Effect of Mechanical Stress on Apple Impedance Parameters. IFMBE Proceedings, Vol. 17.
  22. Willis, J. and Hobday, A., (2008). Application of Bioelectrical Impedance Analysis as a Method for Estimating Composition and Metabolic Condition of Southern Bluefin Tuna (Thumus maccoyii) During Conventional Tagging. Fisheries Research, 93 64-71.
  23. Yamamoto, T., Oomura, Y., Nishino, H., Aou, S. and Nakano, Y., (1985). Driven Shield for Multi-Barrel Electrode. Brain Research Bulletin, 14 103-104.
  24. Yoo, P. J., Lee, D. H., Oh, T. I. and Woo, E. J., (2010). Wideband Bio-impedance Spectroscopy using Voltage Source and Tetra-polar Electrode Configuration. Journal of Physics, 224 012160.
Download


Paper Citation


in Harvard Style

Borges E., Sequeira M., F. V. Cortez A., Pereira H., Pereira T., Almeida V., M. Vasconcelos T., M. Duarte I., Nazaré N., Cardoso J. and Correia C. (2013). Bioimpedance Parameter as a Risk Factor to Assess Pine Decay - An Innovative Approach to the Diagnosis of Plant Diseases . In Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2013) ISBN 978-989-8565-34-1, pages 35-46. DOI: 10.5220/0004230500350046


in Bibtex Style

@conference{biodevices13,
author={E. Borges and M. Sequeira and André F. V. Cortez and H. Catarina Pereira and T. Pereira and V. Almeida and T. M. Vasconcelos and I. M. Duarte and N. Nazaré and J. Cardoso and C. Correia},
title={Bioimpedance Parameter as a Risk Factor to Assess Pine Decay - An Innovative Approach to the Diagnosis of Plant Diseases },
booktitle={Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2013)},
year={2013},
pages={35-46},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004230500350046},
isbn={978-989-8565-34-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2013)
TI - Bioimpedance Parameter as a Risk Factor to Assess Pine Decay - An Innovative Approach to the Diagnosis of Plant Diseases
SN - 978-989-8565-34-1
AU - Borges E.
AU - Sequeira M.
AU - F. V. Cortez A.
AU - Pereira H.
AU - Pereira T.
AU - Almeida V.
AU - M. Vasconcelos T.
AU - M. Duarte I.
AU - Nazaré N.
AU - Cardoso J.
AU - Correia C.
PY - 2013
SP - 35
EP - 46
DO - 10.5220/0004230500350046