Dynamic Data-based Modelling of Synaptic Plasticity: mGluR-dependent Long-term Depression

Tim Tambuyzer, Tariq Ahmed, C. James Taylor, Daniel Berckmans, Detlef Balschun, Jean-Marie Aerts


Recent advances have started to uncover the underlying mechanisms of metabotropic glutamate receptor (mGluR) dependent long-term depression (LTD). However, it is not completely clear how these mechanisms are linked and it is believed that several crucial mechanisms still remain to be revealed. In this study, we investigated whether system identification (SI) methods can be used to gain insight into the mechanisms of synaptic plasticity. SI methods have shown to be an objective and powerful approach for describing how sensory neurons encode information about stimuli. However, to the author’s knowledge it is the first time that SI methods are applied to electrophysiological brain slice recordings of synaptic plasticity responses. The results indicate that the SI approach is a valuable tool for reverse engineering of mGluR-LTD responses. It is suggested that such SI methods can aid to unravel the complexities of synaptic function.


  1. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716-723.
  2. Balschun, D., Wolfer, D.P., Gass, P., Mantamadiotis, T., Welzl, H., Schutz, G., Frey, J. U., & Lipp, H. P. (2003). Does cAMP response element-binding protein have a pivotal role in hippocampal synaptic plasticity and hippocampus-dependent memory? Journal of Neuroscience, 23, 6304-6314.
  3. Behrend, C.E., Cassem, S.M., Pallone, M.J., Daubenspeck, J.A., Hartov, A., Roberts, D.W., & Leiter J.C. (2009). Toward feedback controlled deep brain stimulation: dynamics by metabotropic glutamate receptors. Journal of Neuroscience Methods, 23, 6304-6314.
  4. Bellone, C., Lüscher, C., & Mameli, M. (2008). Mechanisms of synaptic depression triggered by metabotropic glutamate receptors. Cellular and Molecular Life Sciences, 65, 2913-23.
  5. Collingridge, G. L., Peineau, S., Howland J. G., & Wang Y. T. (2010). Long-term depression in the CNS. Nature Reviews Neuroscience, 11, 459-73.
  6. Fukazawa, Y., Saitoh, Y., Ozawa, F., Ohta, Y., Mizuno, K., & Inokuchi, K. (2003). Hippocampal LTP is accompanied by enhanced F-actin content within the dendritic spine that is essential for late LTP maintenance in vivo. Neuron, 38, 447-460.
  7. Hou, L., Antion, M.D., Hu, D., Spencer, C.M., Paylor, R., & Klan, E. (2006). Dynamic translational and proteasomal regulation of fragile X mental retardation protein controls mGluR-dependent long-term depression. Neuron, 51, 441-454.
  8. Izhikevich, E.M. (2007). Dynamical systems in Neuroscience. MIT press, Cambridge
  9. Jarvis, A.J., Stauch, V.J., Schulz, K., & Young, P.C. (2004). The seasonal temperature dependency of photosynthesis and respiration in two deciduous forests. Global Change Biology, 10, 939-950.
  10. Kandel, E.R. (2001). The molecular biology of memory storage: a dialogue between genes and synapses. Science, 294, 1030-1038.
  11. Kondo, S., & Okabe, S. (2011). Turnover of Synapse and Dynamic Nature of Synaptic Molecules In Vitro and In Vivo. Acta Histochem Cytochem, 44, 9-15.
  12. Liu, Y., Birch, A.A., & Allen, R. (2003), Dynamic cerebral autoregulation assessment using an ARX model: comparative study using step response and phase shift analysis. Cell and Tissue Research, 25, 647-653.
  13. Ljung, L. (1987). System identification: theory for the user. Prentice-Hall, Englewood Cliffs, N.J.,
  14. Lüscher, C., & Huber, K. (2010). Group 1 mGluRDependent Synaptic Long-Term Depression: Mechanisms and Implications for Circuitry and Disease. Neuron, 65, 445-459.
  15. Malenka, R.C., & Bear, M.F. (2004). LTP and LTD: an embarrassment of riches. Neuron, 44, 5-21.
  16. Manninen, T., Hituri, K., Kotaleski, J. H., Blackwell, K. T., & Linne, M.-L. (2010). Postsynaptic Signal Transduction Models for Long-Term Potentiation and Depression. Frontiers in Computational Neuroscience, 4, 152.
  17. Massey, P. V., & Bashir, Z. I. (2007). Long-term depression: multiple forms and implications for brain function. Trends in Neurosciences, 30, 176-184.
  18. Mitrophanov, A.Y., & Groisman, E.A. (2008). Positive feedback in cellular control systems. Bioessays, 30, 542-555.
  19. Neves, G., Cooke, S.F., & Bliss T.V.P. (2008). Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nature Reviews Neuroscience, 9, 65-75.
  20. Nieus, T., Sola, E., Mapelli, J.,Saftenku, E., Rossi, P., & D'Angelo, E. (2006). LTP regulates burst initiation and frequency at mossy fiber-granule cell synapses of rat cerebellum: experimental observations and theoretical predictions. Journal of Neurophysiology, 95, 686-699.
  21. Raymond, C.R. (2007). LTP forms 1, 2 and 3: different mechanisms for the ”long” in long-term potentiation. Trends in Neurosciences, 30, 167-175.
  22. Richter, J.D., & Klann, E. (2009). Making synaptic plasticity and memory last: mechanisms of translational regulation. Genes & Development, 23, 1- 11.
  23. Shouval, H.Z., Bear, M.F., & Cooper, L.N. (2002). A unified model of NMDA receptordependent bidirectional synaptic plasticity. Proceedings of the National Academy of Sciences of the United States of America, 99, 10831-10836.
  24. Tambuyzer, T., Ahmed, T., Berckmans, D., Balschun, D., & Aerts, J. (2011). Reverse engineering of metabotropic glutamate receptor-dependent long-term depression in the hippocampus. BMC Neuroscience 2011, 12(Suppl 1): P1.
  25. Taylor C.J., Pedregal, D. J., Young, P. C., &W. Tych. (2007). Environmental time series analysis and forecasting with the CAPTAIN toolbox. Environmental Modelling & Software, 22, 797-814. (http://www.es.lancs.ac.uk/cres/captain/)
  26. Tomlin, C.J., & Axelrod, J.D. (2005). Understanding biology by reverse engineering the control. Proceedings of the National Academy of Sciences of the United States of America, 102, 4219-4220.
  27. Westwick, D.T., Pohlmeyer, E.A., Solla, S.A., Miller, L.E., & Perreault, E.J. (2006). Identification of multiple-input systems with highly coupled inputs: application to EMG prediction from multiple intracortical electrodes. Neural Computation, 18, 329- 55.
  28. Young, P.C. (1984). Recursive estimation and time series analysis. Springer-Verlag, Berlin.

Paper Citation

in Harvard Style

Tambuyzer T., Ahmed T., James Taylor C., Berckmans D., Balschun D. and Aerts J. (2013). Dynamic Data-based Modelling of Synaptic Plasticity: mGluR-dependent Long-term Depression . In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2013) ISBN 978-989-8565-36-5, pages 48-53. DOI: 10.5220/0004231100480053

in Bibtex Style

author={Tim Tambuyzer and Tariq Ahmed and C. James Taylor and Daniel Berckmans and Detlef Balschun and Jean-Marie Aerts},
title={Dynamic Data-based Modelling of Synaptic Plasticity: mGluR-dependent Long-term Depression },
booktitle={Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2013)},

in EndNote Style

JO - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2013)
TI - Dynamic Data-based Modelling of Synaptic Plasticity: mGluR-dependent Long-term Depression
SN - 978-989-8565-36-5
AU - Tambuyzer T.
AU - Ahmed T.
AU - James Taylor C.
AU - Berckmans D.
AU - Balschun D.
AU - Aerts J.
PY - 2013
SP - 48
EP - 53
DO - 10.5220/0004231100480053