A Non-linear Finite Element Model for Assessment of Lumbar Spinal Injury Due to Dynamic Loading

Alexander Tsouknidas, Savvas Savvakis, Nikolaos Tsirelis, Antonios Lontos, Nikolaos Michailidis

Abstract

In this paper a highly detailed model of an adult lumbar spine (L1-L5) was recreated based on Computed Tomography. Next to the viscoelastic deformation of the intervertebral discs, cortical and cancellous bone anisotropy was considered, while seven types of ligaments were simulated either by solid or cable elements. The dynamic behaviour of the spine segment was assessed through stress-strain curves, provoking a non-linear response of all implicated tissues’ material properties. The model was subjected to dynamic loading to determine abnormalities in the anatomy’s stress equilibrium that could provoke gait disturbances. Results indicated the introduced methodology as an effective alternative to in vitro investigations, capable of providing valuable insight on critical movements and loads of potential patients, as the model can be employed to optimize therapeutic training or threshold kinematics of any given lumbar spine pathology.

References

  1. Waters, T. R. Anderson, V. P., Garg, A., 1993, Revised NIOSH equation for the design and evaluation of manual lifting tasks, Ergonomics 36, 749.
  2. Svedmark, P., Tullberg, T., Noz, M. E., Maguire, G. Q. Jr, Zeleznik, M. P., Weidenhielm, L., Nemeth, G., Olivecrona, H., 2012, Three-dimensional movements of the lumbar spine facet joints and segmental movements: in vivo examinations of normal subjects with a new non-invasive method, European Spine Journal 21(4), 599-605.
  3. Rotter, R., Pflugmacher, R., Kandziora, F., Ewert, A., Duda, G., Mittlmeier, T., 2007, Biomechanical in vitro testing of human osteoporotic lumbar vertebrae following prophylactic kyphoplasty with different candidate materials, Spine 32(13), 1400-1405.
  4. Little, J. P., Pearcy, M. J., Tevelen, G., Evans, J. H., Pettet, G., Adam, C. J., 2010, The mechanical response of the ovine lumbar anulus fibrosus to uniaxial, biaxial and shear loads, Journal of the Mechanical Behavior of Biomedical Materials, 3, 146- 157.
  5. Wang, J. P., Zhong, Z. C., Cheng, C. K., Chen, C. S., Yu, C. H., Chang, T. K., Wei, S. H., 2006, Finite element analysis of the spondylolysis in lumbar spine., Biomed Mater Eng.16(5), 301-308.
  6. Ashish, D., Pramod, P, 2009, Development of Computer Aided 3D Model From Computed Tomography Images and its Finite Element Analysis for Lumbar Interbody Fusion with Instrumentation, International Journal of CAD/CAM 9(1) 121-128.
  7. Xiao, Z., Wang, L., Gong, H., Zhu, D., Zhan, X., 2011, A non-linear finite element model of human L4-L5 lumbar spinal segment with three-dimensional solid element ligaments, Theoretical and Applied Mechanics Letters, 1, 064001.
  8. Schmidt, H., Heuer, F., Simon, U., Kettler, A., Rohlmann, A., Claes, L., Wilke, H. J., 2006, Application of a new calibration method for a three-dimensional finite element model of a human lumbar annulus fibrosus, Clinical Biomechanics 21,337-344.
  9. Klinder, T., Ostermann, J., Ehm, M., Franz, A., Kneser, R., Lorenz, C., 2009, Automated model-based vertebra detection, identification, and segmentation in CT images, Medical Image Analysis 13, 471-482.
  10. Tsouknidas, A., Michailidis, N., Savvakis, S., Anagnostidis, K., Bouzakis, K. D. Kapetanos, G., 2012, A FEM modelling technique to determine the mechanical response of a lumbar spine segment under complex loads, Journal of Applied Biomechanics, in press.
  11. Davidson-Jebaseelan, D., Jebaraj, C., Yoganandan N., Rajasekaran, S., 2010, Validation efforts and flexibilities of an eight-year-old human juvenile lumbar spine using a three dimensional finite element model, Medical and Biological Engineering and Computing 48(12), 1223-1231.
  12. El-Rich, M., Arnoux, P. J., Wagnac, E., Brunet, C., Aubin, C. E., 2009, Finite element investigation of the loading rate effect on the spinal load-sharing changes under impact conditions, J Biomech 42(9),1252-62.
  13. Sharma M., Langrana N.A., Rodriguez J., 1995, Role of ligaments and facets in lumbar spinal stability, Spine 20, 887-900.
  14. Tsuang, Y. H., Chiang, Y. F., Hung, C. Y., Wei, H. W., Huang, C.H., Cheng, C.K., 2008, Comparison of cage application modality in posterior lumbar interbody fusion with posterior instrumentation-A finite element study, Medical Engineering & Physics 31(5), 565-570.
  15. Tsouknidas, A., Anagnostidis, K., Maliaris, G., Michailidis, N., 2012, Fracture risk in the femoral hip region: A finite element analysis supported experimental approach, Journal of Biomechanics 45(11), 1959-1964.
  16. Kobayashi, K., Odagawa, K., Sakamoto, M., Tanabe, Y., 2009. Accuracy of Single Plane X-Ray Image-Based Technique for Assessment of Knee Kinematics, Journal of Biomechanical Science and Engineering 4, 192-200.
  17. Tsouknidas, A., Michailidis, N., Savvakis, S., Anagnostidis, K., Bouzakis, K.-D., Kapetanos, G., 2010, A high accuracy CT based FEM model of the lumbar spine to determine its biomechanical response, BIOINFORMATICS 2011 - Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms , 222-22.
  18. Shirazi-Adl, S. A., Shrivastava, S. C., Ahmed, A. M., 1984, Stress analysis of the lumbar disc-body unit in compression. A three-dimensional nonlinear finite element study. Spine 9(2), 120-34.
  19. Smit, T. H., Odgaard, A., Schneider, E., 1997, Structure and function of vertebral trabecular bone. Spine 15; 22(24), 2823-2833.
Download


Paper Citation


in Harvard Style

Tsouknidas A., Savvakis S., Tsirelis N., Lontos A. and Michailidis N. (2013). A Non-linear Finite Element Model for Assessment of Lumbar Spinal Injury Due to Dynamic Loading . In Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2013) ISBN 978-989-8565-35-8, pages 292-295. DOI: 10.5220/0004236902920295


in Bibtex Style

@conference{bioinformatics13,
author={Alexander Tsouknidas and Savvas Savvakis and Nikolaos Tsirelis and Antonios Lontos and Nikolaos Michailidis},
title={A Non-linear Finite Element Model for Assessment of Lumbar Spinal Injury Due to Dynamic Loading},
booktitle={Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2013)},
year={2013},
pages={292-295},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004236902920295},
isbn={978-989-8565-35-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2013)
TI - A Non-linear Finite Element Model for Assessment of Lumbar Spinal Injury Due to Dynamic Loading
SN - 978-989-8565-35-8
AU - Tsouknidas A.
AU - Savvakis S.
AU - Tsirelis N.
AU - Lontos A.
AU - Michailidis N.
PY - 2013
SP - 292
EP - 295
DO - 10.5220/0004236902920295