Analysis of Fault Injection in Implantable Capacitive Blood-pressure Sensors

J. A. Miguel, Y. Lechuga, M. Martinez

Abstract

This work explores the fault injection problem in the particular case of an implantable capacitive micro-electromechanical pressure sensor for blood-flow measurement applied to the detection of in-stent restenosis. In order to develop a MEMS testing method for this sensor and its related electronic circuitry, an accurate and realistic fault model is essential. A behavioural description of the equivalent capacitance in the fault-free case can be obtained from the analytical and numerical solutions of the deflection of a circular diaphragm under a uniformly distributed pressure. However, the deflection problem for faulty conditions due to, for example, contamination-based defects or partially released structures must be solved and modelled using finite-element analysis.

References

  1. Castillejo A., Veychard D., Mir S., Karam J., Courtois B., Failure Mechanisms and Fault Classes for CMOSCompatible Microelectromechanical Systems, IEEE International Test Conference, pp. 541-550, 1998.
  2. Chang S.-P., Lee J.-B., Allen M.G., Robust capacitive pressure sensor array, Sensors and Actuators A: Physical, vol. 101, pp. 231-238, September 2002.
  3. Huang Y., Vasan A. S. S., Doraiswami R., Osterman M., Pecht M., MEMS Reliability Review, IEEE Transactions on Device and Materials Reliability, vol. 12, no. 2, pp. 482-493, June 2012.
  4. Landsberger L. M., Nashed S., Kahrizi M., Paranjape M., On Hillocks Generated During Anisotropic Etching of Si in TMAH, Journal of Microelectromechanical Systems, vol. 5, no. 2, pp. 106-116, 1996.
  5. Mir S., Charlot B., Courtois B., Extending Fault-Based Testing to Microelectromechanical Systems, Journal of Electronic Testing: Theory and Applications, vol. 16, pp. 279-288, 2000.
  6. Mukherjee T., Fedder G. K., Blanton R. D., Hierarchical design and test of integrated microsystems, IEEE Design and Test of Computers, vol. 16 (4), pp.18-27, 1999.
  7. OECD (2010), Health at a Glance: Europe 2010, OECD Publishing. http://dx.doi.org/10.1787/health_glance2010-en
  8. Rosing R., Reichenbach R., Richardson A., Generation of component level fault models for MEMS, Microelectronics Journal, vol. 33, pp. 861-868, 2002.
  9. Takahata K., Gianchandani Y. B., Wise K. D., Micromachined antenna stents and cuffs for monitoring intraluminal pressure and flow, Journal of Microelectromechanical Systems, vol 15(5), pp. 1289- 1298, October 2006.
  10. Teegarden D., Lorenz G., Neul R., How to model and simulate microgyroscope systems, IEEE Spectrum 35 (7), pp. 66-75, 1998.
  11. Timoshenko S., Theory of Plates and Shells, McGrawHill, New York, 1940.
  12. Wang L-T., Stroud C. E, Touba N. A., System-on Chip Test Arquitectures. Nanometer Design for Testability, 1st. ed., Elsevier: Morgan Kaufmann Series, 2008.
Download


Paper Citation


in Harvard Style

Miguel J., Lechuga Y. and Martinez M. (2013). Analysis of Fault Injection in Implantable Capacitive Blood-pressure Sensors . In Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2013) ISBN 978-989-8565-34-1, pages 153-158. DOI: 10.5220/0004241701530158


in Bibtex Style

@conference{biodevices13,
author={J. A. Miguel and Y. Lechuga and M. Martinez},
title={Analysis of Fault Injection in Implantable Capacitive Blood-pressure Sensors},
booktitle={Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2013)},
year={2013},
pages={153-158},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004241701530158},
isbn={978-989-8565-34-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2013)
TI - Analysis of Fault Injection in Implantable Capacitive Blood-pressure Sensors
SN - 978-989-8565-34-1
AU - Miguel J.
AU - Lechuga Y.
AU - Martinez M.
PY - 2013
SP - 153
EP - 158
DO - 10.5220/0004241701530158