Dynamic Selection of Learning Situations in Virtual Environment

Kevin Carpentier, Domitile Lourdeaux, Indira Mouttapa-Thouvenin

Abstract

In a lot of industrial contexts, workers may encounter novel situations which have never occured in their training. Yet, such situations must be handeld successfully to prevent high-cost consequences. Such consequences might be human casualties (in high-risk domains), material damages (in manufacturing domains) or productivity loss (in high performance industry). To address this lack in their training, virtual environments for training should provide a large spectrum of learning situations. The difficulty lies in generating these situations dynamically according to the learners profile while they have a total freedom of interaction in the virtual environment. To address this issue, we propose to generate activities by operationnalising the Zone of Proximal Development in a multidimensional space. The filling of this space will be updated dynamically based on user interactions.

References

  1. Amokrane, K. and Lourdeaux, D. Pedagogical system in virtual environment for high-risk sites. In Proceedings of ICAART 2010.
  2. Amokrane, K. and Lourdeaux, D. (2009). Virtual reality contribution to training and risk prevention. In Proceedings of ICAI 2009.
  3. Barot, C., Burkhardt, J.-M., Lourdeaux, D., and Lenne, D. V3S, a virtual environment for risk management training. In Proceedings of JVRC11.
  4. Barot, C., Lourdeaux, D., and Lenne, D. (2013). Dynamic scenario adaptation balancing control, coherence and emergence. In Proceedings of ICAART 2013.
  5. Brusilovsky, P. and Millán, E. (2007). User models for adaptive hypermedia and adaptive educational systems. Lecture Notes in Computer Science.
  6. Campbell, J. (2008). The Hero With a Thousand Faces. New World Library.
  7. Csikszentmihalyi, M. (1991). Flow: The Psychology of Optimal Experience. Harper Perennial.
  8. Gerbaud, S., Mollet, N., Ganier, F., Arnaldi, B., and Tisseau, J. (2008). GVT: a platform to create virtual environments for procedural training. In IEEE Virtual Reality.
  9. Greimas, A. J. (1966). Sémantique structurale : recherche et méthode. Larousse edition.
  10. Marion, N. (2010). Modélisation de scénarios pédagogiques pour les environnements de réalité virtuelle d'apprentissage humain. PhD thesis, Université de Bretagne Occidentale.
  11. Niehaus, J. M., Li, B., and Riedl, M. O. (2011). Automated scenario adaptation in support of intelligent tutoring systems. In Proceedings of the 24th FLAIRS.
  12. Propp, V. I. (1968). Morphology of the Folktale. University of Texas Press.
  13. Shawver, D. (1997). Virtual actors and avatars in a flexible user-determined-scenario environment. In Virtual Reality Annual International Symposium, 1997.
  14. Smets, P. and Kennes, R. (1994). The transferable belief model. Artificial Intelligence, 66(2):191 - 234.
  15. Vygotsky, L. S. (1978). Mind in Society. Harvard University Press, Cambridge, MA.
Download


Paper Citation


in Harvard Style

Carpentier K., Lourdeaux D. and Mouttapa-Thouvenin I. (2013). Dynamic Selection of Learning Situations in Virtual Environment . In Proceedings of the 5th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART, ISBN 978-989-8565-39-6, pages 101-110. DOI: 10.5220/0004247901010110


in Bibtex Style

@conference{icaart13,
author={Kevin Carpentier and Domitile Lourdeaux and Indira Mouttapa-Thouvenin},
title={Dynamic Selection of Learning Situations in Virtual Environment},
booktitle={Proceedings of the 5th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,},
year={2013},
pages={101-110},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004247901010110},
isbn={978-989-8565-39-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,
TI - Dynamic Selection of Learning Situations in Virtual Environment
SN - 978-989-8565-39-6
AU - Carpentier K.
AU - Lourdeaux D.
AU - Mouttapa-Thouvenin I.
PY - 2013
SP - 101
EP - 110
DO - 10.5220/0004247901010110