MIST: A Tool for Rapid in silico Generation of Molecular Data from Bacterial Genome Sequences

Peter Krukczkiewicz, Steven Mutschall, Dillon Barker, James Thomas, Gary Van Domselaar, Victor P. J. Gannon, Catherine D. Carrillo, Eduardo N. Taboada


Whole-genome sequence (WGS) data can, in principle, resolve bacterial isolates that differ by a single base pair, thus providing the highest level of discriminatory power for epidemiologic subtyping. Nonetheless, because the capability to perform whole-genome sequencing in the context of epidemiological investigations involving priority pathogens has only recently become practical, fewer isolates have WGS data available relative to traditional subtyping methods. It will be important to link these WGS data to data in traditional typing databases such as PulseNet and PubMLST in order to place them into proper historical and epidemiological context, thus enhancing investigative capabilities in response to public health events. We present MIST (Microbial In Silico Typer), a bioinformatics tool for rapidly generating in silico typing data (e.g. MLST, MLVA) from draft bacterial genome assemblies. MIST is highly customizable, allowing the analysis of existing typing methods along with novel typing schemes. Rapid in silico typing provides a link between historical typing data and WGS data, while also providing a framework for the assessment of molecular typing methods based on WGS analysis.


  1. Alexander, D. C., Hao, W., Gilmour, M. W., Zittermann, S., Sarabia, A., Melano, R. G., Peralta, A., Lombos, M., Warren, K., Amatnieks, Y., Virey, E., Ma, J. H., Jamieson, F. B., Low, D. E., and Allen, V. G. (2012). Escherichia coli O104:H4 infections and international travel. Emerging Infectious Diseases, 18(3):473-476. PMID: 22377016.
  2. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3):403-410.
  3. Anjum, M. F., Mafura, M., Slickers, P., Ballmer, K., Kuhnert, P., Woodward, M. J., and Ehricht, R. (2007).
  4. Pathotyping Escherichia coli by using miniaturized DNA microarrays. Applied and Environmental Microbiology, 73(17):5692-5697.
  5. Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and Madden, T. L. (2009). BLAST+: architecture and applications. BMC Bioinformatics, 10:421. PMID: 20003500.
  6. Carrillo, C. D., Kruczkiewicz, P., Mutschall, S., Tudor, A., Clark, C., and Taboada, E. N. (2012). A framework for assessing the concordance of molecular typing methods and the true strain phylogeny of Campylobacter jejuni and C. coli using draft genome sequence data. Frontiers in Cellular and Infection Microbiology, 2:57.
  7. Enright, M. C., Day, N. P. J., Davies, C. E., Peacock, S. J., and Spratt, B. G. (2000). Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. Journal of Clinical Microbiology, 38(3):1008- 1015.
  8. Foxman, B. and Riley, L. (2001). Molecular epidemiology: focus on infection. American Journal of Epidemiology, 153(12):1135-1141. PMID: 11415945.
  9. Gilmour, M. W., Graham, M., Domselaar, G. V., Tyler, S., Kent, H., Trout-Yakel, K. M., Larios, O., Allen, V., Lee, B., and Nadon, C. (2010). High-throughput genome sequencing of two Listeria monocytogenes clinical isolates during a large foodborne outbreak. BMC Genomics, 11(1):120.
  10. Jolley, K. A., Chan, M., and Maiden, M. C. (2004). mlstdbNet - distributed multi-locus sequence typing (MLST) databases. BMC Bioinformatics, 5:86-86. PMID: 15230973 PMCID: 459212.
  11. Jolley, K. A. and Maiden, M. C. J. (2010). BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics, 11:595. PMID: 21143983.
  12. Larsen, M. V., Cosentino, S., Rasmussen, S., Friis, C., Hasman, H., Marvig, R. L., Jelsbak, L., Sicheritz-Pontén, T., Ussery, D. W., Aarestrup, F. M., and Lund, O. (2012). Multilocus sequence typing of total-genomesequenced bacteria. Journal of Clinical Microbiology, 50(4):1355-1361. PMID: 22238442.
  13. Li, W., Raoult, D., and Fournier, P. (2009). Bacterial strain typing in the genomic era. FEMS Microbiology Reviews, 33(5):892-916. PMID: 19453749.
  14. Miya, S., Kimura, B., Sato, M., Takahashi, H., Ishikawa, T., Suda, T., Takakura, C., Fujii, T., and Wiedmann, M. (2008). Development of a multilocus variable-number of tandem repeat typing method for Listeria monocytogenes serotype 4b strains. International Journal of Food Microbiology, 124(3):239-249. PMID: 18457891.
  15. Singh, A., Goering, R. V., Simjee, S., Foley, S. L., and Zervos, M. J. (2006). Application of molecular techniques to the study of hospital infection. Clinical Microbiology Reviews, 19(3):512-530.
  16. Swaminathan, B., Barrett, T. J., Hunter, S. B., and Tauxe, R. V. (2001). PulseNet: the molecular subtyping network for foodborne bacterial disease surveillance, united states. Emerging Infectious Diseases, 7(3):382-389. PMID: 11384513.
  17. Taboada, E. N., Ross, S. L., Mutschall, S. K., Mackinnon, J. M., Roberts, M. J., Buchanan, C. J., Kruczkiewicz, P., Jokinen, C. C., Thomas, J. E., Nash, J. H. E., Gannon, V. P. J., Marshall, B., Pollari, F., and Clark, C. G. (2012). Development and validation of a comparative genomic fingerprinting method for highresolution genotyping of Campylobacter jejuni. Journal of Clinical Microbiology, 50(3):788-797. PMID: 22170908.
  18. van Belkum, A. (2003). High-throughput epidemiologic typing in clinical microbiology. Clinical Microbiology and Infection, 9(2):86-100.
  19. Vogel, U., Szczepanowski, R., Claus, H., J √ľnemann, S., Prior, K., and Harmsen, D. (2012). Ion torrent personal genome machine sequencing for genomic typing of Neisseria Meningitidis for rapid determination of multiple layers of typing information. Journal of Clinical Microbiology, 50(6):1889-1894.
  20. Ward, T. J., Usgaard, T., and Evans, P. (2010). A targeted multilocus genotyping assay for lineage, serogroup, and epidemic clone typing of Listeria monocytogenes. Appl. Environ. Microbiol., 76(19):6680-6684.

Paper Citation

in Harvard Style

Krukczkiewicz P., Mutschall S., Barker D., Thomas J., Van Domselaar G., P. J. Gannon V., D. Carrillo C. and N. Taboada E. (2013). MIST: A Tool for Rapid in silico Generation of Molecular Data from Bacterial Genome Sequences . In Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2013) ISBN 978-989-8565-35-8, pages 316-323. DOI: 10.5220/0004249003160323

in Bibtex Style

author={Peter Krukczkiewicz and Steven Mutschall and Dillon Barker and James Thomas and Gary Van Domselaar and Victor P. J. Gannon and Catherine D. Carrillo and Eduardo N. Taboada},
title={MIST: A Tool for Rapid in silico Generation of Molecular Data from Bacterial Genome Sequences},
booktitle={Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2013)},

in EndNote Style

JO - Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2013)
TI - MIST: A Tool for Rapid in silico Generation of Molecular Data from Bacterial Genome Sequences
SN - 978-989-8565-35-8
AU - Krukczkiewicz P.
AU - Mutschall S.
AU - Barker D.
AU - Thomas J.
AU - Van Domselaar G.
AU - P. J. Gannon V.
AU - D. Carrillo C.
AU - N. Taboada E.
PY - 2013
SP - 316
EP - 323
DO - 10.5220/0004249003160323