Exploratory EEG Analysis using Clustering and Phase-locking Factor

Carlos Carreiras, Helena Aidos, Hugo Silva, Ana Fred


Emotion recognition is essential for psychological and psychiatric applications and for improving the quality of human-machine interaction. Therefore, a simple and reliable method is needed to automatically assess the emotional state of a subject. This paper presents an application of clustering algorithms to feature spaces obtained from the acquired EEG of subjects performing a stress-inducing task. These features were obtained in three ways: using the EEG directly, using ICA to remove eye movement artifacts, and using EMD to extract data-driven modes present in the signals. From these features, we computed band-power features (BPFs) as well as pairwise phase-locking factors (PLFs), in a total of six different feature spaces. These six feature spaces are used as input to various clustering algorithms. The results of these clustering techniques show interesting phenomena, including prevalence for low numbers of clusters and the fact that clusters tend to be made of consecutive test lines.


  1. Ahern, G. L. and Schwartz, G. E. (1985). Differential lateralization for positive and negative emotion in the human brain: EEG spectral analysis. Neuropsychologia, 23:745-755.
  2. Aidos, H. and Fred, A. (2011). Hierarchical clustering with high order dissimilarities. In Proceedings of the 7th International Conference on Machine Learning and Data Mining (MLDM 2011), pages 280-293, New York, USA.
  3. Almeida, M., Schleimer, J.-H., Vigrio, R., and BioucasDias, J. (2011). Source separation and clustering of phase-locked subspaces. IEEE Transactions on Neural Networks, 22:1419-1434.
  4. Canento, F. and Fred, A. and Silva, H. and Gamboa, H. and Lourenc¸o, A. (2011). Multimodal biosignal sensor data handling for emotion recognition. In Proceedings IEEE Sensors, pages 647-650.
  5. Carreiras, C., de Almeida, L. B., and Sanches, J. M. (2012). Phase-locking factor in a motor imagery brain-computer interface. In Eng. in Medicine and Biology Society, 2012. EMBS 2012. 34th Annual International Conference of the IEEE.
  6. Coan, J. A. and Allen, J. J. B. (2007). Handbook of emotion elicitation and assessment. Oxford University Press.
  7. Coan, J. A. and Allen, J. J. B. (2004). Frontal EEG asymmetry as a moderator and mediator of emotion. Biological psychology, 67:7-50.
  8. Fred, A. and Jain, A. K. (2002). Evidence Accumulation Clustering based on the K-Means Algorithm. In roceedings of the 9th Joint IAPR International Workshop on Structural, Syntactic and Statistical Pattern Recognition (SSPR 2002), pages 442-451, Windsor, Canada.
  9. Fulton, J. (2000). The Mensa Book of Total Genius. Carlton Books.
  10. Gamboa, H., Silva, H., and Fred, A. (2007). Himotion project. Technical report, Instituto Superior Tcnico, Lisbon, Portugal.
  11. Herbert, W. (2012). How to Spot a Scoundrel. Scientific American Mind, 23:70-71.
  12. Huang, N., Shen, Z., Long, S., Wu, M., Shih, H., Zheng, Q., Yen, N., Tung, C., and Liu, H. (1998). The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1971):903-995.
  13. Hyvärinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis. Neural Networks, IEEE Transactions on, 10(3):626-634.
  14. Hyvärinen, A., Karhunen, J., and Oja, E. (2001). Independent component analysis, volume 26. Wileyinterscience.
  15. Jain, A. K. (2010). Data clustering: 50 years beyond kmeans. Pattern Recognition Letters, 31:651-666.
  16. Jung, T., Makeig, S., Westerfield, M., Townsend, J., Courchesne, E., and Sejnowski, T. (2000). Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects. Clinical Neurophysiology, 111(10):1745-1758.
  17. Koldovsky, Z. and Tichavsky, P. and Oja, E. (2006). Efficient variant of algorithm FastICA for independent component analysis attaining the Cramér-Rao lower bound. IEEE Transactions on Neural Networks, 17(5):1265-1277.
  18. Lee, T. W. and Girolami, M. and Sejnowski, T. J. (1999). Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural computation, 11(2):417- 441.
  19. Mak, J. N. and Wolpaw, J. R. (2009). Clinical Applications of Brain-Computer Interfaces: Current State and Future Prospects. IEEE Reviews in Biomedical Engineering, 2:187-199.
  20. Pfurtscheller, G. and Lopes da Silva, F. H. (1999). Eventrelated EEG/MEG synchronization and desynchronization: basic principles. Clinical Neurophysiology, 110:1842 - 1857.
  21. Theodoridis, S. and Koutroumbas, K. (2009). Pattern Recognition. Elsevier Academic Press, 4th edition.

Paper Citation

in Harvard Style

Carreiras C., Aidos H., Silva H. and Fred A. (2013). Exploratory EEG Analysis using Clustering and Phase-locking Factor . In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2013) ISBN 978-989-8565-36-5, pages 79-88. DOI: 10.5220/0004251300790088

in Bibtex Style

author={Carlos Carreiras and Helena Aidos and Hugo Silva and Ana Fred},
title={Exploratory EEG Analysis using Clustering and Phase-locking Factor},
booktitle={Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2013)},

in EndNote Style

JO - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2013)
TI - Exploratory EEG Analysis using Clustering and Phase-locking Factor
SN - 978-989-8565-36-5
AU - Carreiras C.
AU - Aidos H.
AU - Silva H.
AU - Fred A.
PY - 2013
SP - 79
EP - 88
DO - 10.5220/0004251300790088