Numerical Kernels for Monitoring and Repairing Plans Involving Continuous and Consumable Resources

Enrico Scala

Abstract

In this paper we introduce a technique for monitoring and repairing a plan dealing with continuous and consumable resources. The mechanism relies on the notion of numerical kernel. Concretely, a numerical kernel establishes the sufficient and necessary conditions for a plan to be valid in a specific state of the system. We employ the mechanism in a continual planning agent and we evaluate experimentally the approach for the Zenotravel domain. Results show good cpu-time w.r.t. a traditional replanning from scratch.

References

  1. Brenner, M. and Nebel, B. (2009). Continual planning and acting in dynamic multiagent environments. Journal of Autonomous Agents and Multiagent Systems, 19(3):297-331.
  2. Conrad, P. R. and Williams, B. C. (2011). Drake: An efficient executive for temporal plans with choice. Journal of Artificial Intelligence Research, 42:607-659.
  3. desJardins, M. E., Durfee, E. H., Ortiz, C. L., and Wolverton, M. J. (1999). A Survey of Research in Distributed, Continual Planning. AI Magazine, 20(4).
  4. Fikes, R., Hart, P. E., and Nilsson, N. J. (1972). Learning and executing generalized robot plans. Artificial Intelligence, 3(1-3):251-288.
  5. Fox, M. and Long, D. (2003). Pddl2.1: An extension to pddl for expressing temporal planning domains. Journal of Artificial Intelligence Research, 20:61-124.
  6. Gerevini, A. and Serina, I. (2010). Efficient plan adaptation through replanning windows and heuristic goals. Fundamenta Informaticae, 102(3-4):287-323.
  7. Gerevini, A. E., Saetti, A., and Serina, I. (2008). An approach to efficient planning with numerical fluents and multi-criteria plan quality. Artificial Intelligence, 172(8-9):899-944.
  8. Hoffmann, J. (2003). The metric-ff planning system: Translating ”ignoring delete lists” to numeric state variables. Journal of Artificial Intelligence Research, 20:291-341.
  9. Nebel, B. and Koehler, J. (1995). Plan reuse versus plan generation: A theoretical and empirical analysis. Artificial Intelligence, 76(1-2):427-454.
  10. Policella, N., Cesta, A., Oddi, A., and Smith, S. (2009). Solve-and-robustify. Journal of Scheduling, 12:299- 314.
  11. Scala, E. (2012). Numerical kernel for plans dealing dealing with continous and consumable resources. Technical Report available at http://www.di.unito.it/ ~scala/kerneltr.ps.
  12. Stergiou, K. and Koubarakis, M. (2000). Backtracking algorithms for disjunctions of temporal constraints. Artificial Intelligence, 120(1):81-117.
Download


Paper Citation


in Harvard Style

Scala E. (2013). Numerical Kernels for Monitoring and Repairing Plans Involving Continuous and Consumable Resources . In Proceedings of the 5th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART, ISBN 978-989-8565-39-6, pages 531-534. DOI: 10.5220/0004260205310534


in Bibtex Style

@conference{icaart13,
author={Enrico Scala},
title={Numerical Kernels for Monitoring and Repairing Plans Involving Continuous and Consumable Resources},
booktitle={Proceedings of the 5th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,},
year={2013},
pages={531-534},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004260205310534},
isbn={978-989-8565-39-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,
TI - Numerical Kernels for Monitoring and Repairing Plans Involving Continuous and Consumable Resources
SN - 978-989-8565-39-6
AU - Scala E.
PY - 2013
SP - 531
EP - 534
DO - 10.5220/0004260205310534