Enhanced Shortest Path Computation for Multiagent-based Intermodal Transport Planning in Dynamic Environments

Christoph Greulich, Stefan Edelkamp, Max Gath, Tobias Warden, Malte Humann, Otthein Herzog, T. G. Sitharam

Abstract

This paper addresses improved urban mobility using multiagent simulation. We provide a description of the agent model and the routing infrastructure as a step towards a rich model of the interactions that happen in intermodal transport planning tasks. The multiagent model is generic in the sense that different public and individual transport agents and transportation agencies can be added and parameterized on-the-fly. It integrates planning with execution. We show that a sequence of calls to Dijkstra’s single-source shortest-paths algorithm is crucial for planning and provide an efficient memory-less implementation with radix heaps in order to make this application feasible with respect to scalability. As a case study, we implement a scenario for Bangalore (India), starting on a higher level of abstraction and drilling down to a running program.

References

  1. Ahuja, R. K., Mehlhorn, K., Orlin, J. B., and Tarjan, R. E. (1990). Faster Algorithms for the Shortest Path Problem. Journal of the ACM, 37(2):213-223.
  2. Akhilesh, K. B., Sitharam, T. G., Goswami, M., and Manjula, D. (2012). User Needs Study: Living Lab on Bangalore Mobility and ICT Research for Smart City Solutions. Technical report, CiSTUP.
  3. Arora, S. (1998). Polynomial time approximation schemes for euclidian traveling salesman and other geometric problems. Journal of the ACM, 45(5):753-782.
  4. Bast, H., Funke, S., Sanders, P., and Schultes, D. (2007). Fast Routing in Road Networks with Transit Nodes. Science, 316(5824):566-566.
  5. Bellifemine, F., Caire, G., and Greenwood, D. (2007). Developing Multi-Agent Systems with JADE, volume 5. Wiley.
  6. Buehler, R. (2011). Determinants of transport mode choice: a comparison of germany and the usa. Journal of Transport Geography, 19(4):644 - 657.
  7. Chen, B. and Cheng, H. H. (2010). A review of the applications of agent technology in traffic and transportation systems. IEEE Transactions On Intelligent Transportation Systems, 11(2):485 -497.
  8. Christofides, N. (1976). Worst-case analysis of a new heuristic for the travelling salesman problem. Technical Report 388, Graduate School of Industrial Administration, Carnegie-Mellon University.
  9. Dial, R. B. (1969). Shortest-path forest with topological ordering. Comm. of the ACM, 12(11):632-633.
  10. Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1(1):269- 271.
  11. Gehrke, J. D., Schuldt, A., and Werner, S. (2008). Quality Criteria for Multiagent-Based Simulations with Conservative Synchronisation. In 13th ASIM Dedicated Conference on Simulation in Production and Logistics (ASIM), pages 177-186.
  12. Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems, Science, and Cybernetics, SSC-4(2).
  13. Hoogendoorn, S. P. and Bovy, P. H. L. (2001). State-of-theart of vehicular traffic flow modelling. Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 215(4):283-303.
  14. Klügl, F. and Rindsfüser, G. (2011). Agent-based route (and mode) choice simulation in real-world networks. In IAT, pages 22-29.
  15. Macal, C. M. and North, M. J. (2010). Tutorial on agentbased modelling and simulation. Operational Research Society, 4:151 - 152.
  16. Meignan, D., Simonin, O., and Koukam, A. (2006). Multiagent approach for simulation and evaluation of urban bus networks. In AAMAS'06, pages 50-56.
Download


Paper Citation


in Harvard Style

Greulich C., Edelkamp S., Gath M., Warden T., Humann M., Herzog O. and Sitharam T. (2013). Enhanced Shortest Path Computation for Multiagent-based Intermodal Transport Planning in Dynamic Environments . In Proceedings of the 5th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART, ISBN 978-989-8565-39-6, pages 324-329. DOI: 10.5220/0004262103240329


in Bibtex Style

@conference{icaart13,
author={Christoph Greulich and Stefan Edelkamp and Max Gath and Tobias Warden and Malte Humann and Otthein Herzog and T. G. Sitharam},
title={Enhanced Shortest Path Computation for Multiagent-based Intermodal Transport Planning in Dynamic Environments},
booktitle={Proceedings of the 5th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,},
year={2013},
pages={324-329},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004262103240329},
isbn={978-989-8565-39-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,
TI - Enhanced Shortest Path Computation for Multiagent-based Intermodal Transport Planning in Dynamic Environments
SN - 978-989-8565-39-6
AU - Greulich C.
AU - Edelkamp S.
AU - Gath M.
AU - Warden T.
AU - Humann M.
AU - Herzog O.
AU - Sitharam T.
PY - 2013
SP - 324
EP - 329
DO - 10.5220/0004262103240329