Measuring Linearity of Curves

Joviša Žunić, Jovanka Pantović, Paul L. Rosin

Abstract

In this paper we define a new linearity measure which can be applied to open curve segments. The new measure ranges over the interval (0;1]; and produces the value 1 if and only if the measured line is a perfect straight line segment. Also, the new linearity measure is invariant with respect to translations, rotations and scaling transformations.

References

  1. Alimog?lu, F. and Alpaydin, E. (2001). Combining multiple representations for pen-based handwritten digit recognition. ELEKTRIK: Turkish Journal of Electrical Engineering and Computer Sciences, 9(1):1-12.
  2. Benhamou, S. (2004). How to reliably estimate the tortuosity of an animals path: straightness, sinuosity, or fractal dimension? Journal of Theoretical Biology, 229(2):209-220.
  3. Bowman, E., Soga, K., and Drummond, T. (2001). Particle shape characterisation using fourier descriptor analysis. Geotechnique, 51(6):545-554.
  4. Canny, J. (1986). A computational approach to edge detection. IEEE Trans. on Patt. Anal. and Mach. Intell., 8(6):679-698.
  5. Direkoglu, C. and Nixon, M. (2011). Shape classification via image-based multiscale description. Pattern Recognition, 44(9):2134-2146.
  6. El-ghazal, A., Basir, O., and Belkasim, S. (2009). Farthest point distance: A new shape signature for Fourier descriptors. Signal Processing: Image Communication, 24(7):572-586.
  7. Gautama, T., Mandic, D., and Hull, M. V. (2004). A novel method for determining the nature of time series. IEEE Transactions on Biomedical Engineering, 51(5):728-736.
  8. Gautama, T., Mandic, D., and Hulle, M. V. (2003). Signal nonlinearity in fMRI: A comparison between BOLD and MION. IEEE Transactions on Medical Images, 22(5):636-644.
  9. Hu, M. (1962). Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory, 8(2):179-187.
  10. Imre, A. (2009). Fractal dimension of time-indexed paths. Applied Mathematics and Computation, 207(1):221- 229.
  11. Manay, S., Cremers, D., Hong, B.-W., Yezzi, A., and Soatto, S. (2006). Integral invariants for shape matching. IEEE Trans. on Patt. Anal. and Mach. Intell., 28(10):1602-1618.
  12. Melter, R., Stojmenovic, I., and Z?unic, J. (1993). A new characterization of digital lines by least square fits. Pattern Recognition Letters, 14(2):83-88.
  13. Mio, W., Srivastava, A., and Joshi, S. (2007). On shape of plane elastic curves. Int. Journal of Computer Vision, 73(3):307-324.
  14. Munich, M. and Perona, P. (2003). Visual identification by signature tracking. IEEE Trans. on Patt. Anal. and Mach. Intell., 25(2):200-217.
  15. Pérez, P., Gangnet, M., and Blake, A. (2003). Poisson image editing. ACM Trans. Graph., 22(3):313-318.
  16. Rahtu, E., Salo, M., and Heikkilä, J. (2006). A new convexity measure based on a probabilistic interpretation of images. IEEE Trans. on Patt. Anal. and Mach. Intell., 28(9):1501-1512.
  17. Rosin, P. (1997). Edges: saliency measures and automatic thresholding. Machine Vision and Applications, 9(4):139-159.
  18. Ruberto, C. D. and Dempster, A. (2000). Circularity measures based on mathematical morphology. Electronics Letters, 36(20):1691-1693.
  19. Schweitzer, H. and Straach, J. (1998). Utilizing moment invariants and gröbner bases to reason about shapes. Computational Intelligence, 14(4):461-474.
  20. Stojmenovic, M., Nayak, A., and Z?unic, J. (2008). Measuring linearity of planar point sets. Pattern Recognition, 41(8):2503-2511.
  21. Stojmenovic, M. and Z?unic, J. (2008). Measuring elongation from shape boundary. Journal Mathematical Imaging and Vision, 30(1):73-85.
  22. Valentine, F. (1964). Convex Sets. McGraw-Hill, New York.
  23. Z?unic, J., Hirota, K., and Rosin, P. (2010). A Hu moment invariant as a shape circularity measure. Pattern Recognition, 43(1):47-57.
  24. Z?unic, J. and Rosin, P. (2003). Rectilinearity meaurements for polygons. IEEE Trans. on Patt. Anal. and Mach. Intell., 25(9):1193-3200.
  25. Z?unic, J. and Rosin, P. (2011). Measuring linearity of open planar curve segments. Image Vision Computing, 29(12):873-879.
  26. Zhang, D. and Lu, G. (2005). Study and evaluation of different Fourier methods for image retrieval. Image and Vision Computing, 23(1):3349.
Download


Paper Citation


in Harvard Style

Žunić J., Pantović J. and L. Rosin P. (2013). Measuring Linearity of Curves . In Proceedings of the 2nd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-8565-41-9, pages 388-395. DOI: 10.5220/0004267603880395


in Bibtex Style

@conference{icpram13,
author={Joviša Žunić and Jovanka Pantović and Paul L. Rosin},
title={Measuring Linearity of Curves},
booktitle={Proceedings of the 2nd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2013},
pages={388-395},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004267603880395},
isbn={978-989-8565-41-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 2nd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - Measuring Linearity of Curves
SN - 978-989-8565-41-9
AU - Žunić J.
AU - Pantović J.
AU - L. Rosin P.
PY - 2013
SP - 388
EP - 395
DO - 10.5220/0004267603880395