A Dense Medial Descriptor for Image Analysis

Matthew van der Zwan, Yuri Meiburg, Alexandru Telea

Abstract

We present dense medial descriptors, a new technique which generalizes the well-known medial axes to encode and manipulate whole 2D grayvalue images, rather than binary shapes. To compute our descriptors, we first reduce an image to a set of threshold-sets in luminance space. Next, we compute a simplified representation of each threshold-set using a noise-resistant medial axis transform. Finally, we use these medial axis transforms to perform a range of operations on the input image, from perfect reconstruction to segmentation, simplification, and artistic effects. Our pipeline can robustly handle any 2D grayscale image, is easy to use, and allows an efficient CPU or GPU-based implementation. We demonstrate our dense medial descriptors with several image-processing applications.

References

  1. Ahuja, N. and Chuang, J. (1997). Shape representation using a generalized potential field model. IEEE TPAMI, 19(2):169-176.
  2. Bai, X. and Latecki, L. (2008). Path similarity skeleton graph matching. IEEE TPAMI, 30(7):1282-1292.
  3. Cao, T., Tang, K., Mohamed, A., and Tan, T. (2010). Parallel banding algorithm to compute exact distance transform with the GPU. In Proc. SIGGRAPH I3D Symp., pages 134-141.
  4. Comaniciu, D. and Meer, P. (2002). Mean shift: A robust approach toward feature space analysis. IEEE TPAMI, 24(5):603-619.
  5. Cornea, N., Silver, D., Yuan, X., and Balasubramanian, R. (2005). Computing hierarchical curve-skeletons of 3D objects. Visual Comput., 21(11):945-955.
  6. Costa, L. and Cesar, R. (2000). Shape analysis and classification. CRC Press.
  7. Foskey, M., Lin, M., and Manocha, D. (2003). Efficient computation of a simplified medial axis. In Proc. Shape Modeling, pages 135-142.
  8. Hassouna, M. and Farag, A. (2009). Variational curve skeletons using gradient vector flow. IEEE TPAMI, 31(12):2257-2274.
  9. Hesselink, W. and Roerdink, J. (2008). Euclidean skeletons of digiral image and volume data in linear time by the integer medial axis transform. IEEE TPAMI, 30(12):2204-2217.
  10. Kass, M., Witkin, A., and Terzopoulos, D. (1988). Snakes: Active contour models. IJCV, 1(4):321-331.
  11. Li, C., Xu, C., Gui, C., and Fox, M. (2010). Distance regularized level set evolution and its application to image segmentation. IEEE TIP, 19(12):32433254.
  12. Macrini, D., Siddiqi, K., and Dickinson, S. (2008). From skeletons to bone graphs: Medial abstraction for object recognition. In Proc. CVPR, pages 324-332.
  13. Ogniewicz, R. L. and Kubler, O. (1995). Hierarchic voronoi skeletons. Patt. Recog., (28):343- 359.
  14. Palagyi, K. and Kuba, A. (1999). Directional 3D thinning using 8 subiterations. In Proc. DGCI, volume 1568, pages 325-336. Springer LNCS.
  15. Papari, G., Petkov, N., and Campisi, P. (2007). Artistic edge and corner preserving smoothing. IEEE TIP, 16(10):2449-2462.
  16. Pudney, C. (1998). Distance-ordered homotopic thinning: A skeletonization algorithm for 3D digital images. CVIU, 72(3):404-413.
  17. Reniers, D. and Telea, A. (2007). Tolerance-based feature transforms. In Advances in Comp. Graphics and Comp. Vision (eds. J. Jorge et al.), pages 187-200. Springer.
  18. Rumpf, M. and Telea, A. (2002). A continuous skeletonization method based on level sets. In Proc. VisSym, pages 151-158.
  19. Sethian, J. (2002). Level Set Methods and Fast Marching Methods. Cambridge Univ. Press.
  20. Shaked, D. and Bruckstein, A. (1998). Pruning medial axes. CVIU, 69(2):156-169.
  21. Shi, J. and Malik, J. (2000). Normalized cuts and image segmentation. IEEE TPAMI, 22(8):888-905.
  22. Siddiqi, K., Bouix, S., Tannenbaum, A., and Zucker, S. (2002). Hamilton-Jacobi skeletons. IJCV, 48(3):215- 231.
  23. Siddiqi, K. and Pizer, S. (2009). Medial Representations: Mathematics, Algorithms and Applications. Springer.
  24. Stolpner, S., Whitesides, S., and Siddiqi, K. (2009). Sampled medial loci and boundary differential geometry. In Proc. IEEE 3DIM, pages 87-95.
  25. Strzodka, R. and Telea, A. (2004). Generalized distance transforms and skeletons in graphics hardware. In Proc. VisSym, pages 221-230.
  26. Sud, A., Foskey, M., and Manocha, D. (2005). Homotopypreserving medial axis simplification. In Proc. SPM, pages 103-110.
  27. Sundar, H., Silver, D., Gagvani, N., and Dickinson, S. (2003). Skeleton based shape matching and retrieval. In Proc. SMI, pages 130-138.
  28. Telea, A. (2012). Feature preserving smoothing of shapes using saliency skeletons. Visualization in Medicine and Life Sciences, pages 155-172.
  29. Telea, A. and van Wijk, J. J. (2002). An augmented fast marching method for computing skeletons and centerlines. In Proc. VisSym, pages 251-259.
  30. van Dortmont, M., van de Wetering, H., and Telea, A. (2006). Skeletonization and distance transforms of 3D volumes using graphics hardware. In Proc. DGCI, pages 617-629. Springer LNCS.
  31. van Eede, M., Macrini, D., Telea, A., and Sminchisescu, C. (2006). Canonical skeletons for shape matching. In Proc. ICPR, pages 542-550.
  32. Wan, M., Dachille, F., and Kaufman, A. (2001). Distancefield based skeletons for virtual navigation. In Proc. IEEE Visualization, pages 239-246.
  33. Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE TIP, 13(4):600-612.
Download


Paper Citation


in Harvard Style

Zwan M., Meiburg Y. and Telea A. (2013). A Dense Medial Descriptor for Image Analysis . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2013) ISBN 978-989-8565-47-1, pages 285-293. DOI: 10.5220/0004279202850293


in Bibtex Style

@conference{visapp13,
author={Matthew van der Zwan and Yuri Meiburg and Alexandru Telea},
title={A Dense Medial Descriptor for Image Analysis},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2013)},
year={2013},
pages={285-293},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004279202850293},
isbn={978-989-8565-47-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2013)
TI - A Dense Medial Descriptor for Image Analysis
SN - 978-989-8565-47-1
AU - Zwan M.
AU - Meiburg Y.
AU - Telea A.
PY - 2013
SP - 285
EP - 293
DO - 10.5220/0004279202850293