An Efficient Alternative to Compute the Genus of Binary Volume Models

Irving Cruz-Matías, Dolors Ayala

Abstract

In this paper we present a method to compute the Euler characteristic (χ) and the genus of a volume dataset. It uses an alternative decomposition model to represent binary volume datasets: the Compact Union of Disjoint Boxes (CUDB). The method is derived from the classical method used with a voxel model and the computation of c and the genus is achieved by analyzing the connectivity among boxes and using a CUDB connectedcomponent labeling process. We have tested our method both with phantom and real datasets and we show that it is more efficient than previous methods based on the voxel model, and other alternative models.

References

  1. Aguilera, A. (1998). Orthogonal Polyhedra: Study and Application. PhD thesis, LSI-UPC.
  2. Andújar, C., Brunet, P., and Ayala, D. (2002). Topologyreducing surface simplification using a discrete solid rep. ACM Trans. on Graphics, 21(2):88 - 105.
  3. Ayala, D., Vergés, E., and Cruz, I. (2012). A polyhedral approach to compute the genus of a volume dataset. In Proceedings of the GRAPP 2012, pages 38-47, Rome, Italy. INSTICC Press.
  4. Cruz-Matías, I. and Ayala, D. (2011). CUDB: An improved decomposition model for orthogonal pseudopolyhedra. Technical Report LSI-11-2-T, UPC.
  5. Cruz-Matías, I. and Ayala, D. (2012). Orthogonal simplification of objects represented by the extreme vertices model. In Proceedings of the GRAPP 2012, pages 193-196, Rome, Italy. INSTICC Press.
  6. Dillencourt, M., Samet, H., and Tamminen, M. (1992). A general approach to connected-component labeling for arbitrary image representations. Journal of the ACM, 39(2):253 - 280.
  7. Grevera, G. J., Udupa, J. K., and Odhner, D. (2000). An order of magnitude faster isosurface rendering in software on a PC than using dedicated, GP rendering hardware. IEEE Trans. Vis. and CG., 6(4):335-345.
  8. Grisan, E., Foracchia, M., and Ruggeri, A. (2003). A novel method for the automatic evaluation of retinal vessel tortuosity. In Proc. of the 25th Annual Int. Conf. of the IEEE EMBS, 2003., volume 1, pages 866 - 869 Vol.1.
  9. Khachan, M., Chenin, P., and Deddi, H. (2000). Polyhedral representation and adjacency graph in n-dimensional digital images. Computer Vision and Image understanding, 79:428 - 441.
  10. Kim, B., Seo, J., and Shin, Y. (2001). Binary volume rendering using Slice-based Binary Shell. The Visual Computer, 17:243 - 257.
  11. Kong, T. and Rosenfeld, A. (1989). Digital topology: Introduction and survey. Computer Vision, Graphics and Image Processing, 48:357-393.
  12. Konkle, S., Moran, P., Hamann, B., and Joy, K. (2003). Fast methods for computing isosurface topology with Betti numbers. In Data Visualization, pages 363 - 376.
  13. Lachaud, J. and Montanvert, A. (2000). Continuous analogs of digital boundaries: A topological approach to isosurfaces. Graphical Models, 62:129 - 164.
  14. Latecki, L. (1997). 3D Well-Composed Pictures. Graphical Models and Image Processing, 59(3):164-172.
  15. Latecki, L., Eckhardt, U., and Rosenfeld, A. (1995). Wellcomposed sets. Computer Vision and Image Understanding, 61(1):70-83.
  16. Mantyla, M. (1988). An Introduction to Solid Modeling. Computer Science Press.
  17. Martín-Badosa, E., Elmoutaouakkil, A., Nuzzo, S., Amblard, D., Vico, L., and Peyrin, F. (2003). A method for the automatic characterization of bone architecture in 3D mice microtomographic images. Computerized Medical Imaging and Graphics, 27:447-458.
  18. Massey, W. S. (1991). A Basic Course in Algebraic Topology. Springer-Verlag.
  19. Odgaard, A. and Gundersen, H. J. (1993). Quantification of Connectivity in Cancellous Bone, with Special Emphasis on 3-D Reconstructions. Bone, 14:173 - 182.
  20. Rodríguez, J., Cruz, I., Vergés, E., and Ayala, D. (2011). A connected-component-labeling-based approach to virtual porosimetry. Graphical Models, 73:296-310.
  21. Samet, H. (1990). Applications of spatial data structures: Computer graphics, image processing, and GIS. Addison-Wesley Longman Publishing Co., Inc.
  22. Schaefer, S., Ju, T., and Warren, J. (2007). Manifold dual contouring. IEEE Transactions on Visualization and Computer Graphics, 13(3):610 - 619.
  23. Toriwaki, J. and Yonekura, T. (2002). Euler number and connectivity indexes of a three dimensional digital picture. Forma, 17:183-209.
  24. Vanderhyde, J. and Szymczak, A. (2008). Topological simplification of isosurfaces in volume data using octrees. Graphical Models, 70:16 - 31.
  25. Vogel, H. J., T ölke, J., Schulz, V., Krafczyk, M., and Roth, K. (2005). Comparison of a lattice-boltzmann model, a full-morphology model, and a pore network model for determining capillary pressure-saturation relationships. Vadose Zone Journal, 4:380 -388.
  26. Wu, K., Otoo, E., and Suzuki, K. (2009). Optimizing twopass connected-component labeling algorithms. Pattern Anal. Appl., 12(2):117-135.
Download


Paper Citation


in Harvard Style

Cruz-Matías I. and Ayala D. (2013). An Efficient Alternative to Compute the Genus of Binary Volume Models . In Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2013) ISBN 978-989-8565-46-4, pages 18-26. DOI: 10.5220/0004280000180026


in Bibtex Style

@conference{grapp13,
author={Irving Cruz-Matías and Dolors Ayala},
title={An Efficient Alternative to Compute the Genus of Binary Volume Models},
booktitle={Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2013)},
year={2013},
pages={18-26},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004280000180026},
isbn={978-989-8565-46-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2013)
TI - An Efficient Alternative to Compute the Genus of Binary Volume Models
SN - 978-989-8565-46-4
AU - Cruz-Matías I.
AU - Ayala D.
PY - 2013
SP - 18
EP - 26
DO - 10.5220/0004280000180026