Depth-Assisted Rectification of Patches - Using RGB-D Consumer Devices to Improve Real-time Keypoint Matching

João Paulo Lima, Francisco Simões, Hideaki Uchiyama, Veronica Teichrieb, Eric Marchand

Abstract

This paper presents a method named Depth-Assisted Rectification of Patches (DARP), which exploits depth information available in RGB-D consumer devices to improve keypoint matching of perspectively distorted images. This is achieved by generating a projective rectification of a patch around the keypoint, which is normalized with respect to perspective distortions and scale. The DARP method runs in real-time and can be used with any local feature detector and descriptor. Evaluations with planar and non-planar scenes show that DARP can obtain better results than existing keypoint matching approaches in oblique poses.

References

  1. Berkmann, J., Caelli, T., 1994. Computation of surface geometry and segmentation using covariance techniques. In IEEE Transactions on Pattern Analysis and Machine Intelligence, volume 16, issue 11, pages 1114-1116.
  2. Del Bimbo, A., Franco, F., Pernici, F., 2010. Local homography estimation using keypoint descriptors. In WIAMIS'10, 11th International Workshop on Image Analysis for Multimedia Interactive Services, 4 pages.
  3. Eyjolfsdottir, E., Turk., M., 2011. Multisensory embedded pose estimation. In WACV'11, IEEE Workshop on Applications of Computer Vision, pages 23-30.
  4. Hinterstoisser, S., Benhimane, S., Navab, N., Fua, P., Lepetit, V., 2008. Online learning of patch perspective rectification for efficient object detection. In CVPR'08, 21th IEEE Conference on Computer Vision and Pattern Recognition, 8 pages.
  5. Hinterstoisser, S., Kutter, O., Navab, N., Fua, P., Lepetit, V., 2009. Real-time learning of accurate patch rectification. In CVPR'09, 22th IEEE Conference on Computer Vision and Pattern Recognition, pages 2945-2952.
  6. Koser, K., Koch, R., 2007. Perspectively invariant normal features. In ICCV'07, 11th IEEE International Conference on Computer Vision, 8 pages.
  7. Kurz, D., Benhimane, S., 2011. Gravity-aware handheld augmented reality. In ISMAR'11, 10th IEEE International Symposium on Mixed and Augmented Reality, pages 111-120.
  8. Lai, K., Bo, L., Ren, X., Fox, D., 2011. A large-scale hierarchical multi-view RGB-D object dataset. In ICRA'11, IEEE International Conference on Robotics and Automation, pages 1817-1824.
  9. Marcon, M., Frigerio, E., Sarti, A., Tubaro, S., 2012. 3D wide baseline correspondences using depth-maps. In Signal Processing: Image Communication, volume 27, issue 8, pages 849-855.
  10. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Van Gool, L., 2005. A comparison of affine region detectors. In International Journal of Computer Vision, volume 5, issue 1-2, pages 43-72.
  11. Morel, J., Yu, G., 2009. ASIFT: A new framework for fully affine invariant image comparison. In SIAM Journal on Imaging Sciences, volume 2, issue 2, pages 438-469.
  12. Moreno-Noguer, F., Lepetit, V., Fua, P., 2007. Accurate non-iterative O(n) solution to the PnP problem. In ICCV'07, 11th IEEE International Conference on Computer Vision, 8 pages.
  13. Pagani, A., Stricker, D., 2009. Learning local patch orientation with a cascade of sparse regressors. In BMVC'09, 20th British Machine Vision Conference, pages 86.1-86.11.
  14. Rosten, E., Drummond, T., 2006. Machine learning for high-speed corner detection. In ECCV'06, 9th European Conference on Computer Vision, pages 430-443.
  15. Rublee, E., Rabaud, V., Konolige, K., Bradski, G., 2011. ORB: an efficient alternative to SIFT or SURF. In ICCV'11, 15th IEEE International Conference on Computer Vision, pages 2564-2571.
  16. Wu, C., Clipp, B., Li, X., Frahm, J.-M., Pollefeys, M., 2008. 3D model matching with viewpoint invariant patches (VIPs). In CVPR'08, IEEE Conference on Computer Vision and Pattern Recognition, 8 pages.
  17. Yang, M., Cao, Y., Förstner, W., McDonald, J., 2010. Robust wide baseline scene alignment based on 3d viewpoint normalization. In ISVC'10, 6th International Symposium on Visual Computing, Lecture Notes in Computer Science, volume 6453, pages 654-665.
Download


Paper Citation


in Harvard Style

Lima J., Simões F., Uchiyama H., Teichrieb V. and Marchand E. (2013). Depth-Assisted Rectification of Patches - Using RGB-D Consumer Devices to Improve Real-time Keypoint Matching . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2013) ISBN 978-989-8565-47-1, pages 651-656. DOI: 10.5220/0004284406510656


in Bibtex Style

@conference{visapp13,
author={João Paulo Lima and Francisco Simões and Hideaki Uchiyama and Veronica Teichrieb and Eric Marchand},
title={Depth-Assisted Rectification of Patches - Using RGB-D Consumer Devices to Improve Real-time Keypoint Matching},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2013)},
year={2013},
pages={651-656},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004284406510656},
isbn={978-989-8565-47-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2013)
TI - Depth-Assisted Rectification of Patches - Using RGB-D Consumer Devices to Improve Real-time Keypoint Matching
SN - 978-989-8565-47-1
AU - Lima J.
AU - Simões F.
AU - Uchiyama H.
AU - Teichrieb V.
AU - Marchand E.
PY - 2013
SP - 651
EP - 656
DO - 10.5220/0004284406510656