Simple, Fast, Accurate Melanocytic Lesion Segmentation in 1D Colour Space

F. Peruch, F. Bogo, M. Bonazza, M. Bressan, V. Cappelleri, E. Peserico

Abstract

We present a novel technique for melanocytic lesion segmentation, based on one-dimensional Principal Component Analysis (PCA) in colour space. Our technique is simple and extremely fast, segmenting highresolution images in a fraction of a second even with the modest computational resources available on a cell phone – an improvement of an order of magnitude or more over state-of-the-art techniques. Our technique is also extremely accurate: very experienced dermatologists disagree with its segmentations less than they disagree with the segmentations of all state-of-the-art techniques we tested, and in fact less than they disagree with the segmentations of dermatologists of moderate experience.

References

  1. Abdi, H. and Williams, L. J. (2010). Principal component analysis. WIREs Comp. Stat., 2(4).
  2. Belloni Fortina, A., Peserico, E., Silletti, A., and Zattra, E. (2011). Where's the naevus? Inter-operator variability in the localization of melanocytic lesion border. Skin Res. and Tech., 18(3).
  3. Celebi, M. E., Aslandogan, Y., and Van Stoecker, W. (2007). Unsupervised border detection in dermoscopy images. Skin Res. and Tech., 13(4).
  4. Celebi, M. E., Iyatomi, H., Schaefer, G., and Stoecker, W. V. (2009). Lesion border detection in dermoscopy images. Comput. Med. Imaging Graph., 33(2).
  5. Celebi, M. E., Kingravi, H. A., Iyatomi, H., Aslandogan, Y. A., Van Stoecker, W., Moss, R. H., Malters, J. M., Grichnik, J. M., Marghoob, A. A., Rabinovitz, H. S., and Menzies, S. W. (2008). Border detection in dermoscopy images using statistical region merging. Skin Res. and Tech., 14(3).
  6. Chang, F., Chen, C.-J., and Lu, C.-J. (2004). A linear-time component-labeling algorithm using contour tracing technique. Comput. Vis. Image Underst., 93(2).
  7. Cucchiara, R., Grana, C., Seidenari, S., and Pellacani, G. (2002). Exploiting color and topological features for region segmentation with recursive fuzzy c-means. Machine Graph. and Vision, 11(2/3).
  8. Erkol, B., Moss, R. H., Stanley, R. J., Van Stoecker, W., and Hvatum, E. (2005). Automatic lesion boundary detection in dermoscopy images using gradient vector flow snakes. Skin Res. and Tech., 11(1).
  9. Fiorese, M., Peserico, E., and Silletti, A. (2011). VirtualShave: Automated hair removal from digital dermatoscopic images. In Proc. of IEEE EMBC.
  10. FotoFinder Systems Inc. (2012). Fotofinder dermoscope. http://www.fotofinder.de/en.html.
  11. Gao, J., Zhang, J., Fleming, M. G., Pollak, I., and Cognetta, A. B. (1998). Segmentation of dermatoscopic images by stabilized inverse diffusion equations. In Proc. of ICIP.
  12. Hance, G. A., Umbaugh, S. E., Moss, R. H., and Stoecker, W. V. (1996). Unsupervised color image segmentation with application to skin tumor borders. In Proc. of IEEE EMBC.
  13. Joel, G., Schmid-Saugeon, P., Guggisberg, D., Cerottini, J. P., Braun, R., Krischer, J., Saurat, J. H., and Murat, K. (2002). Validation of segmentation techniques for digital dermoscopy. Skin Res. and Tech., 8(4).
  14. Ma, W.-Y. and Manjunath, B. S. (2000). EdgeFlow: a technique for boundary detection and image segmentation. IEEE Trans. on Image Processing, 9(8).
  15. Martin-Herrero, J. (2007). Hybrid object labelling in digital images. Machine Vision and Applications, 18(1).
  16. Melli, R., Grana, C., and Cucchiara, R. (2006). Comparison of color clustering algorithms for segmentation of dermatological images. In Proc. of SPIE.
  17. Park, J.-M., Looney, C. G., and Chen, H.-C. (2000). Fast connected component labeling algorithm using a divide and conquer technique. In Proc. of ISCA 15th Conference on Computers and Their Applications.
  18. Rigel, D. S., Friedman, R. J., and Kopf, A. W. (1996). The incidence of malignant melanoma in the United States: issues as we approach the 21st century. JAAD, 34(5, Part 1).
  19. Schmid, P. (1999). Segmentation of digitized dermatoscopic images by two-dimensional color clustering comparison. IEEE Trans. on Medical Imaging, 18(2).
  20. Silletti, A., Peserico, E., Mantovan, A., Zattra, E., Peserico, A., and Belloni Fortina, A. (2009). Variability in human and automatic segmentation of melanocytic lesions. In Proc. of IEEE EMBC.
  21. Silveira, M., Nascimento, J., Marques, J., Marcal, A., Mendonca, T., Yamauchi, S., Maeda, J., and Rozeira, J. (2009). Comparison of segmentation methods for melanoma diagnosis in dermoscopy images. Selected Topics in Signal Processing, 3(1).
  22. Stolz, W., Merkie, T., Cognetta, A., Vogt, T., Landthaler, M., Bilek, P., and Plewig, G. (1994). The ABCD rule of dermatoscopy. JAAD, 30(4).
  23. Suzuki, K., Horiba, I., and Sugie, N. (2003). Linear-time connected-component labeling based on sequential local operations. Comput. Vis. Image Underst., 89(1).
  24. Szeliski, R. (2010). Computer Vision: Algorithms and Applications. Springer.
  25. Wang, H., Chen, X., Moss, R. H., Stanley, R. J., Stoecker, W. V., Celebi, M. E., Szalapski, T. M., Malters, J. M., Grichnik, J. M., Marghoob, A. A., Rabinovits, H. S., and Menzies, S. W. (2010). Watershed segmentation of dermoscopy images using a watershed technique. Skin Res. and Tech., 16(3).
Download


Paper Citation


in Harvard Style

Peruch F., Bogo F., Bonazza M., Bressan M., Cappelleri V. and Peserico E. (2013). Simple, Fast, Accurate Melanocytic Lesion Segmentation in 1D Colour Space . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2013) ISBN 978-989-8565-47-1, pages 191-200. DOI: 10.5220/0004289601910200


in Bibtex Style

@conference{visapp13,
author={F. Peruch and F. Bogo and M. Bonazza and M. Bressan and V. Cappelleri and E. Peserico},
title={Simple, Fast, Accurate Melanocytic Lesion Segmentation in 1D Colour Space},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2013)},
year={2013},
pages={191-200},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004289601910200},
isbn={978-989-8565-47-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2013)
TI - Simple, Fast, Accurate Melanocytic Lesion Segmentation in 1D Colour Space
SN - 978-989-8565-47-1
AU - Peruch F.
AU - Bogo F.
AU - Bonazza M.
AU - Bressan M.
AU - Cappelleri V.
AU - Peserico E.
PY - 2013
SP - 191
EP - 200
DO - 10.5220/0004289601910200